A.D.M. COLLEGE FOR WOMEN (AUTONOMOUS)

(Accredited With 'A' Grade By NAAC 3rd Cycle)

(Affiliated to Bharathidasan University, Tiruchirappalli)

NAGAPATTINAM - 611 001

PG DEPARTMENT OF PHYSICS

SYLLABUS

M.Sc. PHYSICS

(2023-2024 Batch)

M.Sc., PHYSICS

Preamble

The curriculum for the P.G. Physics for universities and colleges is revised as per Learning Outcomes- based Curriculum Framework (LOCF). The learner centric courses are designed to enable the students to progressively develop a good understanding of the concepts of various domains in physics. Significant modification is the inclusion of the courses to equip students to face challenges in industries and make them employable. Skill development in different spheres and confidence building are given a special focus.

Programme Educational Objectives(PEO):

PEO1:	To impart knowledge in advanced concepts and applications in different fields of				
	Physics.				
PEO2:	To prepare students enter in to professional courses.				
PEO3:	To educate students to occupy important positions in business houses,				
	Industries and organizations.				
PEO4:	To equip students with skills to excel in their future careers.				
PEO5:	To enable students to take up challenging jobs.				

Programme	M. Sc., Physics
Programme Code	
Duration	PG – 2YEARS
	PO1: Problem Solving Skill
	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context.
	PO2: Employability Skill
	Inculcate contemporary business practices to enhance employability skills in the competitive environment.
Programme Outcomes (POs)	PO3: Entrepreneurial Skill
	Equip with skills and competencies to become an entrepreneur.
	PO4: Contribution to Society
	Succeed in career endeavors and contribute significantly to society.
	PO 5:Multicultural competence
	Possess knowledge of the values and beliefs of multiple cultures and
	a global perspective.

	PSO1 – Placement
	To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.
	PSO 2 - Entrepreneur
	To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.
Programme Specific	PSO3 – Research and Development
Outcomes (PSOs)	Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.
	PSO4 – Contribution to Business World
	To produce employable, ethical and innovative professionals to sustain in the dynamic business world.
	PSO 5 – Contribution to the Society
	To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

M.Sc. PHYSICS

COURSE STRUCTURE

SCHEMEOFEXAMINATIONS-2023Batch

	COURSE CODE	TITLE OF THE PAPER		CDEDI	EXA M	MAX. MARKS	
PART			HRS	TS	DUR ATI ON	CI A	EXT
		SEMESTER I					
	MSPA	CC I - MATHEMATICAL PHYSICS	6	4	3	25	75
	MSPB	CC II - CLASSICAL MECHANICS AND RELATIVITY	6	4	3	25	75
	MSPCY	CP I - PRACTICAL I	6	4	3	40	60
	MSPE1	EC I - CRYSTAL GROWTH AND THIN FILMS	4	3	3	25	75
PART III	MSPE2	EC II - COMMUNICATION ELECTRONICS	4	3	3	25	75
	MPAEC1	AECC I – SOFT SKILL I ANALYTICAL CHARACTERIZATION TECHNIQUE	2	2	3	25	75
PART IV	MPSEC1	SEC I - PROGRAMMING IN PYTHON	2	2	3	25	75
*Extra Credit 1	MPEC1	ECC I - ARTIFICIAL INTELLIGENCE	2	2	3	0	100
		Total – 7+1	30	22+2			

		SEMESTER II								
PART	COURSE CODE	TITLE OF THE PAPER	HRS	CREDI TS	EXA M DUR ATI ON	M MA	AX. ARKS			
	MSPD	CC III - STATISTICAL MECHANICS	6	4	3	25	75			
	MSPE	CC IV - QUANTUM MECHANICS	6	4	3	25	75			
PART III	MSPFY	CP II - PRACTICAL – II	6	4	3	40	60			
	MSPE3	EC III – BIO-PHYSICS	4	3	3	25	75			
	MSPE4	EC IV - SOLAR ENERGY UTILIZATION	4	3	3	25	75			
	MPAEC2	AECC II – SOFT SKILL II - ELECTRONIC DEVICES AND CIRUCITS	2	2	3	25	75			
PART IV	MPSEC2	SEC II - PHYSICS OF NANOSCIENCE	2	2	3	25	75			

		AND TECHNOLOGY					
*Extra Credit 2	MPEC2	ECC II – VAC I - RESEARCH PUBLICATION AND ETHICS	2	2	3	0	100
		TOTAL – 7+1	30	22+2			
INTERNSHIP/INDUSTRIAL ACTIVITY DURING THE SUMMER VACATION AFTER I							
	YEAR						

SEMESTER III								
PART	COURSE CODE	TITLE OF THE PAPER	HRS	CREDI TS	EXA M DUR ATI ON	MAX. MARKS		
	MSPG	CC V- CONDENSED MATTER PHYSICS	6	4	3	25	75	
	MSPH	CC VI- ELECTROMAGNETIC THEORY	6	4	3	25	75	
PART III	MSPIY	CP III - PRACTICAL – III	6	4	3	40	60	
	MSPE5	EC V - STRUCTURED AND OBJECT ORIENTED PROGRAMMING LAB	4	3	3	25	75	
	MPCIM	CIM - SOLID WASTE MANAGEMENT	4	3	3	25	75	
	MPAEC3	AECC III – SOFT SKILL III - MICROPROCESSOR 8085 AND MICROCONTROLLER 8051	2	2	3	25	75	
	MPSEC3	SEC III -NANOTECHNOLOGY	2	2	3	25	75	
PART IV	MPIS	INTERNSHIP/INDUSTRIAL ACTIVITY	-	2	-	-	-	
*Extra Credit 3	MPEC3	ECC III – VAC II - MEDICAL INSTRUMENTATION	2	2	3	0	100	
		TOTAL – 7+1	30	24				

SEMESTER IV								
PART	COURSE CODE	TITLE OF THE PAPER	HRS	CREDIT S	EXA M DUR ATI ON	MAX. MARKS		
	MSPJ	CC VII - NUCLEAR AND PARTICLE PHYSICS	6	4	3	25	75	
PART III	MSPK	CC VIII – ADVANCED SPECTROSCOPY	6	4	3	25	75	
	MSPLY	CP IV - PRACTICAL – IV NUMERICAL METHODS AND COMPUTER PROGRAMMING	6	4	3	40	60	

	MSPMP	CC IX - PROJECT	4	3	3	25	75
	MSPE4	EC VI - JAVA PROGRAMMING	4	3	3	25	75
	MPAEC4	AECC IV – SOFT SKILL IV - LASER PHYSICS AND NON LINEAR OPTICS	2	2	3	25	75
PART IV	MPPCS	PCS – DATA ANALYTICS	2	2	3	25	75
PART V		EXTENSION ACTIVITY	-	1			
		Total - 7	30	23			
			120	91+6			

Grand Total – Credit 91 & Extra Credit 6

SEMESTER-I

Semester-I		MATHEMATICAL PHYSICS	Course Coo	le:		
Instruction Hour	rs: 6	Credits: 4	Exam Hours	s: 3		
Internal Marks	-25	External Marks-75	Total Marks:	100		
CognitiveLevel		K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating				
COURSE OBJECTIVES		 To equip students with the mathematical tec T understanding theoretical treatment in d program To extend their manipulative skills to app their fields To help students apply Mathematics in solvi To find the solutions for physical problems equations. 	hniques. ifferent courses taug ly mathematical tec ing problems of Phys using linear differen	,ht in their hniques in sics. tial		
UNITS	Course Details					
UNIT I: LINEAR VECTOR SPACE	Basic indep orthc notat space sum	Basic concepts – Definitions- examples of vector space – Linear ndependence - Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure –linear operators – Dual space- ket and bra notation – orthogonal basis – change of basis – Isomorphism of vector pace – projection operator –Eigen values and Eigen functions – Direct um and invariant subspace – orthogonal transformations and rotation				
UNIT II: COMPLEX ANALYSIS	Revi Com Func cond Form Resid fields	Review of Complex Numbers -de Moivre's theorem-Functions of a Complex Variable- Differentiability -Analytic functions- Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann onditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles – Residue theorem and its Application: Potential theory - (1) Electrostatic ields and complex potentials - Parallel plates, coaxial cylinders and an unnular region (2) Heat problems - Parallel plates and coaxial cylinders				
UNIT III: MATRICES	Type matri Matri equa Diag	es of Matrices and their properties, Rank of a Matrix - Adjoint of a matrix - Inverse of a matrix - Hencices -Trace of a matrix- Transformation of matrix- tion - Eigen values and Eigen vectors - Cayley-Honalization.	rix -Conjugate of a rmitian and Unitary ces - Characteristic Iamilton theorem –	18 Hrs		

UNIT IV: FOURIER TRANSFORMS & LAPLACE TRANSFORMS	Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta function -Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium - Wave equation: Vibration of an infinite string and of a semi - infinite string. Laplace transform and its inverse - Transforms of derivatives and integrals – Differentiation and integration of transforms - Dirac delta functions - Application - Laplace equation: Potential problem in a semi - infinite strip.						
UNIT V: DIFFERENTIAL EQUATIONS	cond order differential equation- Sturm-Liouville's theory - Series lution with simple examples - Hermite polynomials - Generating nction - Orthogonality properties - Recurrence relations – Legendre lynomials - Generating function - Rodrigue formula – Orthogonality 18 Hrs operties - Dirac delta function- One dimensional Green's function and eciprocity theorem -Sturm-Liouville's type equation in one dimension &						
TEXT BOOKS	 George Arfken and Hans J Weber, 2012, Mathematical Methods for Physicists A Comprehensive Guide (7th edition), Academic press. B. D. Gupta, 2009, <i>Mathematical Physics</i> (4th edition), Vikas Publishing House, New Delhi. H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics, Seventh 						
REFERENCE BOOKS	 E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New Delhi, D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd Ed. Narosa, New Delhi. S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw - Hill, New York 3. E. Butkov, 1968, Mathematical Physics Addison - Wesley, Reading, Massachusetts. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated East West, New Delhi. C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6 th Edition, International Edition, McGraw-Hill, New York 						
WEB RESOURCES	 <u>www.khanacademy.org</u> <u>https://youtu.be/LZnRIOA1_2I</u> <u>http://hyperphysics.phy-astr.gsu.edu/hbase/hmat.html#hmath</u> <u>https://www.youtube.com/watch?v=_2jymuM7OUU&list=PLhkiT_RYTEU27v</u> <u>S_SIED56gNjVJGO2qaZ</u> <u>https://archive.nptel.ac.in/courses/115/106/115106086/</u> 						

At the end of the course the student will be able to:

CO	Understand use of bra-ket vector notation and explain the meaning of				
1	complete orthonormal set of basis vectors, and transformations and be able	K1, K2			
	to apply them				
CO	Able to understand analytic functions, do complex integration, by applying				
2	Cauchy Integral Formula. Able to compute many real integrals and infinite	K2, K3			
	sums via complex integration.				
CO	Analyze characteristics of matrices and its different types, and the process of	V A			
3	diagonalization.	Λ4			
CO	Solve equations using Laplace transform and analyze the Fourier				
4	transformations of different function, grasp how these transformations can	K4, K5			
	speed up analysis and correlate their importance in technology				
CO5	To find the solutions for physical problems using linear differential				
	equations and to solve boundary value problems using Green's function.	K2, K5			
	Apply special functions in computation of solutions to real world problems				
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate					

MAPPING OF CO₈ WITH PO₈& PSO₈:

CO/PO		PO	РО				PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	S	S	М	S	S	S	S	М
CO2	S	S	S	М	М	S	М	S	М	М
CO3	М	S	М	М	М	М	S	S	S	М
CO4	S	М	S	S	М	S	S	S	S	S
CO5	М	М	S	М	S	S	S	М	S	М

Sen	nester-I	CLASS	CAL MECHANICS AND	Course Code:					
T.	naturation House		KELAIIVIII	Even Herry 2					
6	istruction Hours:		Creans: 4	Exam Hours: 5					
I	nternal Marks -25]	External Marks-75	Total Marks: 100					
(CognitiveLevel	K1-Recalling K2-Understar K3-Applying K4-Analyzing K5-Evaluating K6-Creating	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating						
CC	DURSE	• To unders	stand fundamentals of classical mecha	anics.					
OR	JECTIVES	• To under	stand Lagrangian formulation of me	echanics and apply it to					
		solve equ	ation of motion.						
	• To understand Hamiltonian formulation of mechanics and apply it to								
	• To discuss the theory of small oscillations of a system.								
		• To learn t	he relativistic formulation of mechan	ics of a system.					
	UNI	ГS	Course						
			Mechanics of a single particle - m						
	UNIT	: I:	particles - conservation laws for						
	PRINCIP	PLES OF	constraints – holonomic & non-l	18 Hrs					
	CLASSICAL N	IECHANICS	generalized coordinates – co						
			transformation equations – principle						
	UNIT	II:	D'Alembert's principle – Lagrang	ian equations of motion					
	LAGRAN	IGIAN	for conservative systems – applicati	ons: (i) simple pendulum	18 Hrs				
	FORMUL	ATION	(ii) Atwood's machine (iii) projectil						
	UNIT HAMILT FORMUL	III: ONIAN ATION	Phase space – cyclic coordinates – conjugate momentum – Hamiltonian function – Hamilton's canonical equations of motion – applications: (i) simple pendulum (ii) one dimensional simple harmonic oscillator (iii) motion of particle in a central force field.18 HrsFormulation of the problem – transformation to normal coordinates – frequencies of normal modes – linear triatomic molecule.18 Hrs						
	UNIT SMALL OSCI	IV: LLATIONS							
	UNIT RELAT	' V: IVITY	Inertial and non-inertial frames – equations – length contraction and t addition of velocities – Einstein's Minkowski's space – four vecto momentum, acceleration and force is their transformations	Lorentz transformation ime dilation – relativistic mass-energy relation – rs – position, velocity, in for vector notation and	18 Hrs				

	1. H. Goldstein, 2002, <i>Classical Mechanics</i> , 3rd Edition, Pearson Edu.
TEXT BOOKS	2. J. C. Upadhyaya, <i>Classical Mechanics</i> , Himalaya Publshing. Co.
	New Delhi.
	3. R. Resnick, 1968, Introduction to Special Theory of Relativity,
	Wiley Eastern, New Delhi.
	1. K. R. Symon, 1971, Mechanics, Addison Wesley, London.
	2. S. N. Biswas, 1999, Classical Mechanics, Books & Allied,
REFERENCE BOOKS	Kolkata.
	3. Gupta and Kumar, Classical Mechanics, Kedar Nath.
	4. T.W.B. Kibble, Classical Mechanics, ELBS.
	5. Greenwood, Classical Dynamics, PHI, New Delhi.
	1. https://pdfcoffee.com/classical-mechanics-j-c-upadhyay-2014-
	editionpdf-pdf-free.html
WEB RESOURCES	2. <u>https://nptel.ac.in/courses/122/106/122106027/</u>
	3. https://ocw.mit.edu/courses/physics/8-09-classical-mechanics-iii-
	fall-2014/lecture-notes/
	4. <u>https://www.britannica.com/science/relativistic-mechanics</u>

At the end of the course the student will be able to:

C01	Understand the fundamentals of classical mechanics.	K2		
CO2	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	К3		
CO3	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	K3, K5		
CO4	Analyze the small oscillations in systems and determine their normal modes of oscillations.	K4, K5		
CO5	Understand and apply the principles of relativistic kinematics to the mechanical systems.	K2, K3		
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate				

CO/PO		PO	РО				PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	S	S	S	М	S	S	М
CO2	М	S	S	S	М	S	М	S	М	S
CO3	S	S	S	М	S	М	S	S	М	М
CO4	S	М	М	М	М	S	М	S	М	М
CO5	М	М	S	М	S	М	S	М	S	S

PRACTICAL I	Course Code:			
Credits: 4	Exam Hours: 3			
External Marks-60	Total Marks: 100			
K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating				
 K6-Creating To understand the concept of mechanical behavior of materials and calculation of same using appropriate equations. To calculate the thermodynamic quantities and physical properties of materials. To analyze the optical and electrical properties of materials. To Acquire knowledge about arc spectrum and applications of laser. To Improve the analytical and observation ability in Physics 				
Course Details				
(Any Twelve Experiments ement of Coefficient of linear expansion- Air wedge nation of Rydberg's Constant - Hydrogen Spectrum ement of Band gap energy- Thermistor nation of Planck Constant – LED Method ement of Conductivity - Four probe method. nation of Specific charge of an electron – Thomson	s) Method ² s method.			
	PRACTICAL I Credits: 4 External Marks-60 K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating • To understand the concept of mechanical calculation of same using appropriate equati • To calculate the thermodynamic quantities materials. • To calculate the thermodynamic quantities materials. • To analyze the optical and electrical propertion to Acquire knowledge about arc spectrum at To Improve the analytical and observation at Experiments Course Details (Any Twelve Experiments) Experiments ment of Coefficient of linear expansion- Air wedge nation of Rydberg's Constant - Hydrogen Spectrum cont of Band gap energy- Thermistor nation of Planck Constant – LED Method cont of Conductivity - Four probe method. Method			

- 8. Construction of relaxation oscillator using UJT
- 9. V- I Characteristics of different colours of LED.
- 10. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 11. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 12. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer.
- 13. FET CS amplifier- Frequency response, input impedance, output impedance
- 14. Study of R-S, clocked R-S and D-Flip flop using NAND gates
- 15. Study of J-K, D and T flip flops using IC 7476/7473
- 16. Arithmetic operations using IC 7483- 4-bit binary addition and subtraction.
- 17. Study of Arithmetic logic unit using IC 74181.
- 18. Construction of Op-Amp- 4 bit Digital to Analog converter (Binary Weighted and R/2R ladder type)
- 19. Construction of Encoder and Decoder circuits using ICs.

	1. Practical Physics, Gupta and Kumar, Pragati Prakasan.
	2. Kit Developed for doing experiments in Physics- Instruction manual,
	R. Srinivasan K.R Priolkar, Indian Academy of Sciences.
ΤΕΥΤ ΒΟΟΙ/Ο	3. Electronic Laboratory Primer a design approach, S. Poornachandra,
IEAI DUUKS	B. Sasikala, Wheeler Publishing, New Delhi.
	4. Electronic lab manual Vol I, K ANavas, Rajath Publishing.
	5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition
	1. Advanced Practical Physics, S.P Singh, PragatiPrakasan.
REFERENCE	2. An advanced course in Practical Physics, D. Chattopadhayay, C.R
BOOKS	Rakshit, New Central Book Agency Pvt. Ltd
	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern
	Economy Edition.
	4. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley &
	Sons (Asia) Pvt. Ltd.
	5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
	Publishing.

Г

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus.	K2			
CO2	Acquire knowledge of thermal behaviour of the matetials.	K1			
CO3	Understand theoretical principles of magnetism through the experiments.	K2			
CO4	Acquire knowledge about arc spectrum and applications of laser	K1, K3			
CO5	Improve the analytical and observation ability in Physics Experiments	K3, K5			
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate					

MAPPING OF CO_s WITH PO_s& PSO_s:

CO/PO		PO				PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	М	М	S	М	S	S	М
CO2	М	S	М	S	М	S	М	S	М	S
CO3	S	S	S	S	М	S	S	S	S	М
CO4	S	Μ	S	М	S	S	М	S	М	Μ
CO5	М	М	S	М	S	М	S	S	S	М

Semester-I	EC-I CRYSTAL GROWTH AND THIN FILMS	Course Code:				
Instruction Hours:	Credits: 3	Exam Hours: 3				
4 Internal Marks -25	External Marks-75	Total Marks: 100				
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating					
COURSE OBJECTIVES	 To acquire the knowledge on Nucleation and To understand the Crystallization Principles a To study various methods of Crystal growth t 	Kinetics of crystal growth nd Growth techniques				
	 To study various methods of Crystal growth t To understand the thin film deposition method To apply the techniques of Thin Film Formati Measurement 	 To study various methods of Crystal growth techniques To understand the thin film deposition methods To apply the techniques of Thin Film Formation and thickness Measurement 				
UNITS Course Details						
UNIT I: CRYSTAL GROWT KINETICS	Basic Concepts, Nucleation and Kinetics of growth Ambient phase equilibrium - super saturation - equilibrium of finite phases equation of Thomson - Gibbs - Types of Nucleation - Formation of critical Nucleus - Classical theory of Nucleation - Homo and heterogeneous formation of 3D nuclei - rate of Nucleation - Growth from vapour phase solutions, solutions and melts - epitaxial growth - Growth mechanism and classification - Kinetics of growth of epitaxial films					
UNIT II: CRYSTALLIZATIO PRINCIPLES	 Crystallization Principles and Growth technique Crystal symmetry - Solvents and solutions - solubility - expression for super saturation - Me period - Miers TC diagram - Solution growth solution growth - Slow cooling and solvent ev temperature bath as a Crystallizer. 	es Classes of Crystal system - Solubility diagram - Super tastable zone and introduction - Low and high temperatures aporation methods - Constant	12Hrs			
UNIT III: GEL, MELT AND VAPOUR GROWTH	Gel, Melt and Vapour growth techniques Principle of Gel techniques - Various1types of Gel - Structure and importance of Gel - Methods of Gel growth andadvantages - Melt techniques - Czochralski growth - Floating zone -Bridgeman method - Horizontal gradient freeze - Flux growth - Hydrothermalgrowth - Vapour phase growth - Physical vapour deposition - Chemicalvapour deposition - Stoichiometry.					
UNIT IV: THIN FILM DEPOSITION	Thin film deposition methods of thin film pre Electron beam evaporation, pulsed LASER depo Magnetron sputtering, MBE, chemical vapour de coating, Spray pyrolysis, Chemical bath depositi	paration, Thermal evaporation, osition, Cathodic sputtering, RF eposition methods, Sol Gel spin on.	12Hrs			

METHODS						
UNIT V:	Thin Film Formation and thickness Measurement Nucleation, Film growth and structure - Various stages in Thin Film formation, Thermodynamics of Nucleation, Nucleation theories, Capillarity model and Atomistic model and					
THIN FILM FORMATION	their comparison. Structure of Thin Film, Roll of substrate, Roll of film thickness, Film thickness measurement - Interferometry, Ellipsometry, Micro balance, Quartz Crystal Oscillator techniques.	12Hrs				
	1. V. Markov Crystal growth for beginners: Fundamentals of Nucleation, Crysta	al Growth				
TEXT BOOKS	 TEXT BOOKS and Epitaxy (2004) 2nd edition A. Goswami, Thin Film Fundamentals (New Age, New Delhi, 2008) M. Ohora and R. C. Reid, "Modeling of Crystal Growth Rates from Solution" 					
	1. J.C. Brice, Crystal Growth Process (John Wiley, New York, 1986)					
REFERENCE	 REFERENCE 2. P. Ramasamy and F. D. Gnanam, 1983, "UGC Summer School Notes". 3. P. Santhana Raghavan and P. Ramasamy, "Crystal Growth Processes Publications. 					
DOOKS	 4. H.E. Buckley, 1951, Crystal Growth, John Wiley and New York 5. B.R. Pamplin, 1980, Crystal Growth, Pergman Press, London. 	Sons,				
	1. https://www.voutube.com/playlist?list=PLbMVogVi5nJRiLrXp3kMtrIO8kZl1	D1Jp				
WEB RESOURCES	 2. <u>https://www.youtube.com/playlist?list=PLFW6lRTa1g83HGEihgwcy7KeTLU</u> 3. <u>https://www.youtube.com/playlist?list=PLADLRin7kNjG1Dlna9MDA53CMK</u> <u>m</u> 	<u>uBu3WF</u> <u>(FHPSi9</u>				
	 4. <u>https://www.youtube.com/playlist?list=PLXHedI-xbyr8xII_KQFs_R_oky3Yd</u> 5. <u>https://www.electrical4u.com/thermal-conductivity-of-metals/</u> 	<u>lEmw</u>				

At the end of the course, the student will be able to:

CO1	Acquire the Basic Concepts, Nucleation and Kinetics of crystal growth	K1			
CO2	Understand the Crystallization Principles and Growth techniques	K2, K4			
CO3	Study various methods of Crystal growth techniques				
CO4	Understand the Thin film deposition methods	K2			
CO5	Apply the techniques of Thin Film Formation and thickness Measurement	K3, K4			
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate					

MAPPING OF CO₈ WITH PO₈& PSO₈:

CO/PO		PO	РО				PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	Μ	S	М	S	М	S	S	М
CO2	М	S	S	S	М	S	М	S	М	S
CO3	S	S	S	S	М	S	S	S	S	М
CO4	S	М	Μ	М	М	S	М	S	М	М
CO5	М	М	S	М	S	М	S	М	S	S

Semester-I	EC-II	Course Code:	
Instruction Hours:	COMMUNICATION ELECTRONICS Credits: 3	Exam Hours: 3	
4			
Internal Marks -25	External Marks-75	Total Marks: 100	
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating		
COURSE OBJECTIVES	 To comprehend the transmission of electro different types of antenna and also to acque propagation of waves through earth's atmosp of the earth To gain knowledge in the generation and prop To acquire knowledge about radar systems are the working principle of colour television To learn the working principle of fiber telecommunication 	magnetic waves thorou uire knowledge about where and along the surfa- pagation of microwaves and its applications and a mostics and its use	igh the ace lso in
UNITS	Course Details		
UNITS UNIT I: ANTENNAS AND WAVE PROPAGATION	Course Details Radiation field and radiation resistance of s grounded antenna-ungrounded antenna-antenna directional high frequency antennas-sky wave-ion propagation.	short dipole antenna- arrays-antenna gain- nosphere-ground wave	12Hrs
UNITS UNIT I: ANTENNAS AND WAVE PROPAGATION UNIT II: MICROWAVES	Course Details Radiation field and radiation resistance of segrounded antenna-ungrounded antenna-antenna directional high frequency antennas-sky wave-ior propagation. Microwave generation—multi cavity Klyss magnetron travelling wave tubes (TWT) and of MASER-Gunn diode-wave guides-rectangular wave indicator and standing wave ratio(SWR)	short dipole antenna- arrays-antenna gain- nosphere-ground wave tron-reflex klystron- ther microwave tubes- wave guides-standing	12Hrs 12Hrs
UNITS UNIT I: ANTENNAS AND WAVE PROPAGATION UNIT II: MICROWAVES UNIT III: RADAR AND TELEVISION	Course DetailsRadiation field and radiation resistance of a grounded antenna-ungrounded antenna-antenna directional high frequency antennas-sky wave-ion propagation.Microwave generation—multi cavity Klys magnetron travelling wave tubes (TWT) and of MASER-Gunn diode-wave guides-rectangular wave indicator and standing wave ratio(SWR)Elements of a radar system -radar perform transmitting systems-radar antennas-duplexers indicators-pulsed systems - colour TV transm CCTV and theatre TV	short dipole antenna- arrays-antenna gain- nosphere-ground wave atron-reflex klystron- ther microwave tubes- wave guides-standing mance Factors radar a-radar receivers and hission and reception-	12Hrs 12Hrs 12Hrs

UNIT V:	Orbital	satelli	tes-geostationary	satellites-c	orbital	pattern	s-satellite	
SATELLITE	system	link	models-satellite	system	param	eters-	-INSAT	12Hrs
COMMUNICATION	commun	Ication s	satellites					

TEXT BOOKS	 Handbook of Electronics by Gupta and Kumar, 2008 edition. Electronic communication systems – George Kennedy and Davis, Tata McGraw Hill, 4th edition, 1988. Taub and Schilling, principles of communication systems, second edition, Tata Mc Graw Hill (1991).
REFERENCE BOOKS	 Electronic communications – Dennis Roody and Coolen, Prentice Hall of India, IV edition, 1995. Wayne Tomasi, Advanced electronics communication systems, fourth edition, Prentice Hall of India, 1998 Dennis Roddy and Coolen, 1995, <i>Electronics communications</i>, Prentice Hall of India IV Edition. Wayne Tomasi, 1998 "Advanced Electronics communication System" 4th edition, Prentice Hall of India, 1998 S. Salivahanan, N. Suersh Kumar & A. Vallavaraj, 2009, Electronic Devices and Circuits, Tata McGraw-Hill Publishing Company Limited, New Delhi, Second Edition.
WEB RESOURCES	 <u>https://www.geeksforgeeks.org/digital-electronics-logic-design-tutorials/</u> <u>https://www.polytechnichub.com/difference-analog-instruments-digital-instruments/</u> <u>http://nptel.iitm.ac.in/</u> <u>http://web.ewu.edu/</u> <u>http://nptel.iitm.ac.in/</u>

At the end of the course, the student will be able to:

CO1	Discuss and compare the propagation of electromagnetic waves through sky and on earth's surface Evaluate the energy and power radiated by the different types of antenna	K1, K5
CO2	Compare and differentiate the methods of generation of microwaves analyze the propagation of microwaves through wave guides- discuss and compare the different methods of generation of microwaves	K4
CO3	Classify and compare the working of different radar systems- apply the principle of radar in detecting locating, tracking, and recognizing objects of various kinds at considerable distances – discuss the importance of radar in	K3

	military- elaborate and compare the working of different picture tube				
CO4	Classify, discuss and compare the different types of optical fiber and also to justify the need of it-discover the use of optical fiber as wave guide	K1, K3			
CO5	Explain the importance of satellite communication in our daily life-distinguish between orbital and geostationary satellites elaborate the linking of satellites with ground station on the earth	K4			
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;					

М

S

М

S

Μ

CO/PO PO PSO 5 2 3 4 2 3 5 1 1 4 CO1 S S М М М S Μ S S CO2 S S S S S S М М М CO3 S S S S S S М S S CO4 S Μ Μ М S Μ S М М CO5 Μ S S S Μ S Μ S М

MAPPING OF CO_S WITH PO_S& PSO_S:

Semester-I	AECC-I	Course Code:	
	ANALYTICAL CHARACTERIZATION TECHNIQUES		
Instruction Hours: 2	Credits: 2	Exam Hours: 3	
Internal Marks -25	External Marks-75	Total Marks: 100	
CognitiveLevel COURSE OBJECTIVES	 K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating To provide fundamental features of analytical instrumentation to thestude To impart knowledge about the funda properties of the instrumentalanalysis To experimental and theoretical aspects characterization techniques. To know the basic theory of character and application. To Understand spectral, optical, and the second secon	nts. Imental s of the rization techniques thermal	
UNITS	Course Details		
		NT	4 11
UNIT - I	Principle of X-ray spectrometer technique – ray scattering – X-ray photoelectron spectro relation of core hole – Application, limitations of X-ray photoelectron spectrosc	Small angle X- scopy – Auger strength and opy	4 Hrs
	SPECTRAL CHARACTERIZATION:		4 Hrs
UNIT – II	Laser sources – Laser Raman Spectrometer sources – Fourier Transform Interferom basic principles – NMR spectrometer principles – Instrumentation of ESR	er – Radiation eter – NMR – ESR basic	
	OPTICAL CHARACTERIZATION:		4 Hrs
UNIT – III	Instruments for absorption pho Photoluminescence principles – Instrum Application – Ultraviolet absorption sp Principle behind IR spectroscopy – Four Infrared spectroscopy (FTIR) – Street	otometry – nentation and pectroscopy – rier Transform	

	spectroscopy			
UNIT – IV	THERMAL AND MECHANICAL CHARACTERIZATION:Thermal methods – Thermogravimetric analysis – Differential Thermal analysis – Mechanical principles: Static and Dynamic measurement – Instrumentation of Extensometer analysis – Bending properties of materials – In-Plane Impact testing	4 Hrs		
UNIT – V	MORPHOLOGICAL CHARACTERIZATION: Basic principles – Instrumentations: Scanning Electron Microscopy (SEM) – Operation modes – Transmission Electron Microscopy (TEM) – Scanning Tunneling Microscopy (STM).	4 Hrs		
TEXT BOOKS	 N. Banwell, Fundamentals of Molecular and Spectroscopy (McGraw Hill, NewDelhi, 2008). P. S. Sindu, Molecular Spectroscopy (Newage, New D 2006). H. H. Willard and L. L. Merritretal, International I of Analysis (CBSPublication, New Delhi, 2008). 	elhi, Methods		
REFERENCES:	 S. Zhang, L. Li and A. Kumar, Materials Characterization Techniques (CRCPress, Bota Racon, 2009). E. N. Kaufmann, Characterization of Materials, Volume-I (Wiley, New Jersey,2012). M. Sardela, Practical Materials Characterization (Springer, Heidelberg, 2014). P. R. Khangaonkar, An Introduction to Material Characterization (Penram,Mumbai, 2008). Y.Leng, Materials Characterization: Introduction to Microscopic andSpectroscopic Methods (Wiley, New Jersey, 2008). https://nptel.ac.in/courses/113105101 			

At the end of the course, the student will be able to:

CO1	• Understand the various processes of structural characterizations.	K1, K5
CO2	• Realize how to use the instruments practically and theoretically.	K4
CO3	• Understand spectral, optical, and thermal characterizations.	K3
CO4	• Use advanced characterizations for analyzing particles.	K1,
		K3
C05	• Characterize the sample with appropriate characterization techniques.	K4
K1 - Re	member; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

CO/PO		PO				PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	М	М	S	М	S	S	М
CO2	М	M	S	S	М	S	М	S	М	S
CO3	S	S	S	S	М	S	S	S	S	Μ
CO4	S	M	М	Μ	М	S	S	Μ	М	S
CO5	М	M	S	М	S	М	S	М	S	S

Semester-I	SECI- Programming in Python	Course Code	:			
Instruction Hours: 2	Credits: 2 Exam Hours: External Marks-75 Total Marks: 1					
Internal Marks -25	External Marks-75	Total Marks: 100				
Coupse	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating	16				
OBJECTIVES	 To introduce core programming basics required Python language To read and write simple Python programs To develop Python Programs with conditionals To use Python data Structure – lists, tuples, dic To introduce the important science modules Sy Pandas and Matplotlib and input/output with statistical processing of a data. 	s and loops ctionaries ymPy, NumPy, Sci files in Python and	Py, I			
UNITS	Course Details		4			
UNIT :1	Algorithmic Problem SolvingAlgorithms, building blocks of algorithms (statemer flow, functions);Algorithmic problem solving; iteration, recursion. Problems: flow chat,finding minimum in a list, fac number.	ent, state, control Illustrative ctorial of a	4 Hrs			
UNIT :1I	Data, Expressions, Statements in PythonPython Strengths and Weakness; Installing PythSpyder – Jupyter; Mutable and Immutable DNaming Conventions; String Value; String OString Slices; String Operators; String functionsData Types; Arithmetic operators and ExpComments in the Program;	non; IDLE- ata Types, Operations; s. Numeric pressions ;	4 Hrs			
UNIT :111	Data Collection and Language Component of P List; Tuples; Sets; Dictionaries; Operations on Set, Dictionary; Control Flow and Syntax; Indent statement ; Relational Operators; Logical Oper wise operators; The while Loop – break and statements; the for Loop; List Comprehension	Yython list, Tuple, ting; The if rators; Bit- d continue	4 Hrs			

UNIT :1V		
	Functions in Python Functions- Introduction; defining your own functions; Parameters; local and global scope; passing collections to a function; variable number of argument; passing functions to a function; Lambda function; map; filter.	4 Hrs
UNIT :V	Modules for science Module: Introduction; Standard Modules – sys, math, time, sympy, random.	
	Handling Scientific Data in Python	
	Numpy arrays-1-d, multidimensional arrays and matrices; Mathematical operations with arrays; slicing and addressing arrays; Boolean masks; Difference between lists and arrays	4 Hrs
	scipy – Scientific computing libraryof Python – Introduction, Basic functions, Special functions, scipy.integrate, scipy.optimize,scipy.interpolate	
Text Book(s)	David J.Pine, Introduction to Python for Science and Engineering, CRC Press,2019.	
	Robert Johansson, Numerical Python-Scientific Computing and Data science Applications with Numpy, Scipy and Matplotlib, Apress, 2019	
Reference Book(S)		
	 Robert sedgewick, Kelvin Wayne, Robert Dondero, Introduction to Programming in Python: An Inter – disciplinary Approach, Pearson India Education Services Pvt.Ltd.,2016 Nelli, F., Python Data Analytics: with Pandas, Numpy and Matplotlib, Apress,2018 Jake vander Plas, Python Data Science Handbook – Essential Tools for Working with Data, 'O' Really Media, 2017 	
WEB RESOURCES	 <u>https://www.analyticsinsight.net</u> <u>https://tinker.lytopwebsite</u>. <u>https://www.learnpython.org</u>. https://www.online phython.com 	

At the end of the course, the student will be able to:

CO1	Gained knowledge in fundamental aspects of Algorithms,	K1		
CO2	Equipped to take up related job by Data, Expressions, Statements in Python	К3		
CO3	Develop entrepreneurial skills Modules for science	K5		
CO4	Skilled to approach the needy Data visualization and Analysis of Data in Python	K4		
CO5	Identify the properties of Handling Scientific Data in Python	K2, K3		
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;				

CO/PO	CO/PO PO				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	Μ	M	М	S	Μ	S	S	М
CO2	М	M	S	M	М	S	Μ	S	М	S
CO3	S	S	S	S	М	М	S	S	S	М
CO4	S	М	М	M	М	S	S	Μ	S	S
CO5	М	М	S	M	S	М	S	М	S	М

Semester-I	ARTIFICIAL INTELLIGENCE	Course Code:
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating	
COURSE OBJECTIVES	 To introduce Artificial Intelligence & machine le To facilitate students to learn To apply AI tools for solving research issues in To understand the basics of robotic process aut To develop automated solutions for research p 	earning for biology students physics tomation roblems in biology

UNITS	Course Details	
UNIT I:	Artificial Intelligence (AI): Introduction to AI – Fundamentals – Need for AI –Foundations of AI – AI environment	4 Hrs
UNIT II:	Application domains of AI – AI tools – Challenges and Future of AI.	4 Hrs
UNIT III:	SEARCH STRATEGIES: Breadth-First Search - Uniform Cost Search - Depth-First Search - Depth-Limited Search - Iterative Deepening Search - Bidirectional Search - Heuristic Search Techniques - A* Search - AO* Algorithm	4 Hrs
UNIT IV:	Robotic Process Automation (RPA): Fundamentals of RPA – Programming basics from RPA perspective – Applying RPA – RPA development methodology – Architecture of RPA.	4 Hrs
UNIT V:	Introduction - Automation debugging – Automation library - Activities Packages – Basic automation tasks - Text and image automation – Data tables in RPA –	4 Hrs
TEXT BOOKS	 Stuart J Russell and Peter Norvig, —Artificial Intelligence - A Mode Approachl, Third Edition, Prentice Hall of India/ Pearson Education Delhi, 2015. Elaine Rich and Kevin Knight, —Artificial Intelligencel, Tata M Publishing Company, New Delhi, 2014. 	ern , New IcGraw Hill

REFERENCE BOOKS	 Eugene Charniak and Drew McDermott, —Introduction to Artificial Intelligencel, Pearson Education, New Delhi, 2010. Nils J Nilsson, —Principles of Artificial Intelligencel, Narosa Publishing House, New Delhi, 2000.
WEB RESOURCES	 https://onlinecourses.swayam2.ac.in/cec20_cs10/preview https://nptel.ac.in/courses/106/105/106105077/

At the end of the course the student will be able to:

CO1	Know what is artificial intelligence	K1, K2			
CO2	Learn the search strategies using AI	K2, K3			
CO3	Learn basics of Python programming	K4			
CO4	Understand the robotic process automation	K4, K5			
CO5	Understand automation tasks and debugging	K2, K5			
K1 - Re	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate				

MAPPING OF CO_s WITH PO_s& PSO_s:

CO/PO		PO PSO								
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	S	S	М	S	S	S	S	М
CO2	S	S	S	М	М	S	М	S	М	М
CO3	М	S	М	М	М	М	S	S	S	М
CO4	S	М	S	S	М	S	S	S	S	S
CO5	М	М	S	М	S	S	S	М	S	М

SEMESTER-II

SEMESTER-II	STATISTICAL MECHANICS	Course Code:
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating	
COURSE OBJECTIVES	 To acquire the knowledge of thermodyr understand phase transition in thermodynamic To identify the relationship between stati quantities To comprehend the concept of partition func- canonical ensembles 	namic potentials and to es stic and thermodynamic tion, canonical and grand
	 To grasp the fundamental knowledge about th statistics To get in depth knowledge about phase transit thermodynamic properties that vary with time 	e three types of tions and fluctuation of

UNITS	Course Details	
UNIT I: PHASE TRANSITIONS	Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule - Phase transitions and Ehrenfest's classifications –Third law of Thermodynamics. Order parameters – Landau's theory of phase transition - Critical indices - Scale transformations and dimensional analysis.	18 Hrs
UNIT II:	Foundations of statistical mechanics - Specification of	18 Hrs
STATISTICAL	states of a system - Micro canonical ensemble - Phase	
MECHANICS AND	space – Entropy - Connection between statistics and thermodynamics – Entropy of an ideal gas using the micro	
THERMODYNAMICS	canonical ensemble - Entropy of mixing and Gibb's paradox.	
UNIT III: CANONICAL AND	Trajectories and density of states - Liouville's theorem - Canonical and grand canonical ensembles - Partition	18 Hrs
GRAND CANONICAL ENSEMBLES	density fluctuations.	

UNIT IV:	Density matrix - Statistics of ensembles - Statistics of	18 Hrs
CLASSICAL AND	statistics - Fermi-Dirac statistics – Ideal Fermi gas –	
QUANTUM	Degeneracy - Bose-Einstein statistics - Plank radiation	
STATISTICS	Cluster expansion for a classical gas. Virial equation of	
UNIT V: REAL GAS, ISING MODEL AND FLUCTUATIONS	 cluster expansion for a classical gas - virial equation of state Calculation of the first Virial coefficient in the cluster expansion - Ising model - Mean-field theories of the Ising model in three, two and one dimensions - Exact solutions in one dimension. Correlation of space-time dependent fluctuations - Fluctuations and transport phenomena - Brownian motion - Langevin's theory - Fluctuation-dissipation theorem - The Fokker-Planck equation 	18 Hrs

	1. S. K. Sinha, 1990, Statistical Mechanics, Tata McGraw Hill, New Delhi.
	2. B. K. Agarwal and M. Eisner, 1998, Statistical Mechanics, Second Edition
τεντ βοους	New Age International, New Delhi.
TEAT BOOKS	3. J. K. Bhattacharjee, 1996, Statistical Mechanics: An Introductory Text, Allied
	Publication, New Delhi.
	1. R. K. Pathria, 1996, <i>Statistical Mechanics</i> , 2 nd edition, Butter WorthHeinemann, New Delhi
RFFFRFNCF	 L. D. Landau and E. M. Lifshitz, 1969, <i>Statistical Physics</i>, Pergamon Press, Oxford
BOOKS	3. K. Huang, 2002, <i>Statistical Mechanics</i> , Taylor and Francis, London
	4. W. Greiner, L. Neise and H. Stoecker, Thermodynamics and Statistical
	Mechanics, Springer Verlang, New York.
	5. A. B. Gupta, H. Roy, 2002, Thermal Physics, Books and Allied, Kolkata.
	1. https://byjus.com/chemistry/third-law-of-thermodynamics/
WED	2. https://web.stanford.edu/~peastman/statmech/thermodynamics.html
WED	3. https://en.wikiversity.org/wiki/Statistical_mechanics_and_thermodynamics
KESUUKCES	4. https://en.wikipedia.org/wiki/Grand_canonical_ensemble
	5. <u>https://en.wikipedia.org/wiki/Ising_model</u>

At the end of the course the student will be able to:

CO1	To examine and elaborate the effect of changes in thermodynamic quantities on the states of matter during phase transition	K5
CO2	To analyze the macroscopic properties such as pressure, volume, temperature, specific heat, elastic moduli etc. using microscopic properties like intermolecular forces, chemical bonding, atomicity etc. Describe the peculiar behaviour of the entropy by mixing two gases Justify the connection between statistics and thermodynamic quantities	K4
CO3	Differentiate between canonical and grand canonical ensembles and to interpret the relation between thermodynamical quantities and partition function	K1
CO4	To recall and apply the different statistical concepts to analyze the behaviour of ideal Fermi gas and ideal Bose gas and also to compare and distinguish between the three types of statistics.	K4, K5
CO5	To discuss and examine the thermodynamical behaviour of gases under fluctuation and also using Ising model	K3
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

CO/PO		PO				PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	М	М	S	М	S	S	М
CO2	М	М	S	М	М	S	М	Μ	М	S
CO3	S	S	М	S	М	М	S	S	М	М
CO4	S	М	М	М	S	S	S	М	S	S
CO5	S	Μ	S	М	S	М	S	S	S	М

SEMESTER-II	QUANTUM MECHANICS	Course Code:				
Instruction Hours: 6	Credits: 4	Exam Hours: 3				
Internal Marks -25	External Marks-75	Total Marks: 100				
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating					
COURSE OBJECTIVES	 K6-Creating To develop the physical principles and the mathematical backgroun important to quantum mechanical descriptions. To describe the propagation of a particle in a simple, one-dimension potential. To formulate and solve the Schrodinger's equation to obtai eigenvectors and energies for particle in a three-dimensional potential. To explain the mathematical formalism and the significance of constants of motion, and see their relation to fundamental symmetric in nature To discuss the Approximation methods like perturbation theory, 					

UNITS	Course Details					
UNIT I: BASIC FORMALISM	Interpretation of the wave function – Time dependent Schrodinger equation –Time independent Schrodinger equation – Stationary states – Ehrenfest's theorem – Linear vector space – Linear operator – Eigen functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous measurability of observables – General Uncertainty relation	18 Hrs				
UNIT II: ONE DIMENSIONAL AND THREE- DIMENSIONAL ENERGY EIGEN VALUE PROBLEMS	Square – well potential with rigid walls – Square well potential with finite walls – Square potential barrier – Alpha emission – Bloch waves in a periodic potential – Kronig-penny square – well periodic potential – Linear harmonic oscillator: Operator method – Particle moving in a spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid rotator	18 Hrs				
UNIT III: GENERAL FORMALISM	Dirac notation – Equations of motions – Schrodinger representation – Heisenberg representation – Interaction representation – Coordinate representation – Momentum representation – Symmetries and conservation laws – Unitary transformation – Parity and time reversal	18 Hrs				

UNIT IV:	Time independent perturbation theory for non-degenerate energy	
APPROXIMATIO	levels - Degenerate energy levels - Stark effect in Hydrogen atom -	18 Hrs
N METHODS	Ground and excited state - Variation method - Helium atom - WKB	

	approximation – Connection formulae (no derivation) – WKB
	quantization – Application to simple harmonic oscillator.
UNIT V: ANGULAR MOMENTUM	Eigenvalue spectrum of general angular momentum – Ladder18 Hrsoperators and their algebra – Matrix representation – Spin angularmomentum – Addition of angular momenta – CG Coefficients –Symmetry and anti – symmetry of wave functions – Construction ofwave-functions and Pauli's exclusion principle.
TEXT BOOKS	 P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2ndedition(37th Reprint), Tata McGraw-Hill, New Delhi, 2010. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Delhi, 2009. David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 2011.
REFERENCE BOOKS	 E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New York, 1970. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, New Delhi, 1985. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press, Oxford, 1976. S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata, 1999. V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science International Ltd, Oxford, 2011.
WEB RESOURCES	 http://research.chem.psu.edu/lxjgroup/download_files/chem565-c7.pdf http://www.feynmanlectures.caltech.edu/III_20.html http://web.mit.edu/8.05/handouts/jaffe1.pdf https://hepwww.pp.rl.ac.uk/users/haywood/Group_Theory_Lectures/Lect ure_ 1.pdf https://theory.physics.manchester.ac.uk/~xian/qm/chapter3.pdf

At the end of the course the student will be able to:

CO1	Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics	K1, K5			
CO2	Is able to apply and analyze the Schrodinger equation to solve one	K3,			
	dimensional problems and three dimensional problems	K4			
CO3	Can discuss the various representations, space time symmetries and	K1			
	formulations of time evolution	KI			
CO4	Can formulate and analyze the approximation methods for various	K4,			
	quantum mechanical problems	K5			
CO5	To apply non-commutative algebra for topics such as angular and spin	K3,			
	angular momentum and hence explain spectral line splitting.	K4			
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate					

CO/PO		РО				PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	М	М	S	М	S	S	М
CO2	М	M	S	Μ	М	S	Μ	Μ	М	S
CO3	S	S	М	S	М	М	S	S	М	М
CO4	S	M	М	М	S	S	S	М	S	S
CO5	S	М	S	S	М	М	S	S	М	S

SEMESTER-II	PRACTICAL II	Course Code:				
Instruction Hours: 6	Credits: 4	Exam Hours: 3				
Internal Marks -40	External Marks-60	Total Marks: 100				
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating					
COURSE OBJECTIVES	 To understand the concept of mechanical be calculation of same using appropriate equation To calculate the thermodynamic quantities a materials. To analyze the optical and electrical propertie To observe the applications of FET and UJT. 	ehavior of materials and ns. nd physical properties of s of materials.				
	 To study the different applications of operational amplifier circuits. To learn about Combinational Logic Circuits and Sequential Logic Circuits 					

Course Details

(Any Twelve Experiments)

- 1. Determination of Stefan's constant of radiation from a hot body
- 2. Measurement of Coefficient of linear expansion- Air wedge Method
- 3. Measurement of Susceptibility of liquid Quincke's method
- 4. B-H curve using CRO
- 5. Measurement of Magnetic Susceptibility Guoy's method
- 6. Determination of Solar constant
- 7. Determination of Thickness of thin film. Michelson Interferometer
- 8. Molecular spectra CN bands
- 9. Determination of Refractive index of liquids using diode Laser/ He Ne Laser
- 10. Hall Effect in Semiconductor. Determine the Hall coefficient, carrier concentration and carrier mobility
- 11. Interpretation of vibrational spectra of a given material
- 12. Determination of I-V Characteristics and efficiency of solar cell.
- 13. IC 7490 as scalar and seven segment display using IC7447
- 14. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter
- 15. Construction of Current to Voltage and Voltage to Current Conversion using IC 741.
- 16. Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193
- 17. Construction of square wave generator using IC 555 Study of VCO
- 18. BCD to Excess- 3 and Excess 3 to BCD code conversion
- 19. Study of binary up / down counters IC 7476 / IC7473
- 20. Study of synchronous parallel 4-bit binary up/down counter using IC 74193
- 21. Study of asynchronous parallel 4-bit binary up/down counter using IC 7493
- 22. Construction of Multiplexer and Demultiplexer using ICs.

	1 Practical Physics, Gunta and Kumar, Pragati Prakasan
	2. Kit Developed for doing experiments in Physics- Instruction manual,
	R. Srinivasan K.R Priolkar, Indian Academy of Sciences
TEXT BOOKS	3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern
	Economy Edition.
	4. Electronic lab manual Vol I, K ANavas, Rajath Publishing
	5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition
	1. An advanced course in Practical Physics, D. Chattopadhayay,
	C.R Rakshit, New Central Book Agency Pvt. Ltd
	2. Advanced Practical Physics, S.P Singh, Pragati Prakasan
REFERENCE	3. A course on experiment with He-Ne Laser, R. S. Sirohi, John Wiley &
BOOKS	Sons (Asia) Pvt. ltd
	4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya
	Publishing
	5. Electronic Laboratory Primer a design approach, S. Poornachandra,
	B. Sasikala, Wheeler Publishing, New Delhi

At the end of the course the student will be able to:

CO1	Understand the strength of material using Young's modulus	K2		
CO2	Acquire knowledge of thermal behaviour of the materials	K1		
CO3	Understand theoretical principles of magnetism through the experiments.	K2		
CO4	Acquire knowledge about arc spectrum and applications of laser	K1		
CO5	Improve the analytical and observation ability in Physics Experiments	K4		
K1 - Re	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate			

MAPPING OF CO_S WITH POs & PSOs:

CO/PO		PO	PO				PSO			
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	М	М	М	S	М	S	S	М
CO2	М	M	S	М	М	S	М	М	М	S
CO3	S	S	М	S	М	М	S	S	М	М
CO4	S	M	М	М	S	S	S	М	S	S
CO5	М	М	S	М	М	S	S	М	М	М

SEMESTER-II	EC III-BIO PHYSICS	Course Code:
Instruction Hours: 4	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating	
COURSE OBJECTIVES	 To understand the physical principles involve maintenance. To understand the fundamentals of macromo involved in propagation of life. To understand the biophysical function of me To understand various kinds of radiation and system and to know the hazards posed by surrequired precautions. To understand the physical principles behind available for interrogating biological macrom 	d in cell function olecular structures embrane and neuron. their effects on living ch radiations and the the various techniques olecules.

UNITS	Course Details	
UNIT I:	CELLULAR BIOPHYSICS Architecture and Life Cycle of cells – Organelles of Prokaryotic and Eukaryotic cell – Cell size and shape – Fine structure of Prokaryotic and Eukaryotic cell organization – Compartment & assemblies membrane system – Extracellular matrix - Molecular mechanisms of Vesicular traffic - Electrical activities of cardiac and neuronal cells.	12 Hrs
UNIT II:	MOLECULAR BIOPHYSICS Macromolecular structure: Protein structure – amino acids, peptide bonds, primary, secondary, tertiary and quaternary structures of proteins Nucleic acid structure: nucleosides and nucleotides, RNA structure, DNA structure and conformation. Special Bio-macromolecules: Metalloproteins, nucleoproteins, ribozymes, chaperons and prions.	12 Hrs
UNIT III:	MEMBRANE AND NEURO BIOPHYISCS Models membranes - Biological membranes and dynamics – Membrane Capacitors – Transport across cell and organelle membranes – Ion channels. Nervous system: Organization of the nervous system –Membrane potential – Origins of membrane potential - Electrochemical potentials – Nernst equation – Goldman equation.	12 Hrs

RADIATION BIO PHYSICS	12				
X-Ray: Effects on bio-macromolecules – Gamma Radiation: Molecular	Hrs				
effects of gamma radiation, Radiation effects on nucleic acids and					
membranes, Effects on cell and organelles – UV radiation: Effects on					
bio-macromolecules and proteins – Radiation hazards and protection –					
use of radiations in cancer.					
	12				
Spectroscopy: UV-Visible absorption spectrophotometry – Optical	Hrs				
Rotatory Dispersion (ORD) – Structure Determination: X-ray					
Crystallography, Electron spin resonance (ESR) and biological					
applications. Chromatography: Thin layer chromatography (TLC), Gas					
liquid chromatography (GLC) – Centrifugation: Differential					
centrifugation, density gradient centrifugation. Electrophoresis: Gel					
electrophoresis, polyacrylamide gel electrophoresis.					
1. The cell: A molecular approach. Geoffrey M. Cooper. ASM Press.					
2013.					
2. Biophysics, VasanthaPattabhi, N. Gautham, Narosa Publishing, 2009					
3. Biophysics, P. S. Mishra VK Enterprises, 2010.					
4. Biophysics, M. A Subramanian, MJP Publishers, 2005.					
5. Bioinstrumentation, L. Veerakumari, MJP Publishers, 2006.					
1. Chemical Biophysics by Daniel A Beard (Cambridge University Press,	1				
2008).					
2. Essential cell biology by Bruce Albert et al (Garland Science)					
3. Biophysics, W. Hoppe, W. Lohmann, H. Markl and H. Ziegler.					
Springer Verlag, Berlin (1983).					
4. Membrane Biophysics by Mohammad Ashrafuzzaman, Jack A.					
Tuszynski, (Springer science & business media).					
5. Biological spectroscopyby Jain D. Campbell, Raymond A. Dwek					
1. General Bio: http://www.biology.arizona.edu/DEFAULT.html	1				
2. Spectroscopy: <u>http://www.cis.rit.edu/htbooks/nmr/inside.htm</u>					
3. Electrophoresis: <u>http://learn.genetics.utah.edu/content/labs/gel/</u>					
 4. Online biophysics programs: <u>http://mw.concord.org/modeler/</u> 5. https://blanco.biomol.uci.edu/WWWResources.html 					
	 RADIATION BIO PHYSICS X-Ray: Effects on bio-macromolecules – Gamma Radiation: Molecular effects of gamma radiation, Radiation effects on nucleic acids and membranes, Effects on cell and organelles – UV radiation: Effects on bio-macromolecules and proteins – Radiation hazards and protection – use of radiations in cancer. PHYSICAL METHODS IN BIOLOGY Spectroscopy: UV-Visible absorption spectrophotometry – Optical Rotatory Dispersion (ORD) – Structure Determination: X-ray Crystallography, Electron spin resonance (ESR) and biological applications. Chromatography: Thin layer chromatography (TLC), Gas liquid chromatography (GLC) – Centrifugation. Electrophoresis: Gel electrophoresis, polyacrylamide gel electrophoresis. 1. The cell: A molecular approach, Geoffrey M. Cooper, ASM Press, 2013. 2. Biophysics, P. S. Mishra VK Enterprises, 2010. 4. Biophysics, P. S. Mishra VK Enterprises, 2005. 5. Bioinstrumentation, L. Veerakumari, MJP Publishers, 2006. 1. Chemical Biophysics by Daniel A Beard (Cambridge University Press, 2008). 2. Essential cell biology by Bruce Albert et al (Garland Science) 3. Biophysics, W. Hoppe, W. Lohmann, H. Markl and H. Ziegler. Springer Verlag, Berlin (1983). 4. Membrane Biophysics by Mohammad Ashrafuzzaman, Jack A. Tuszynski, (Springer science & business media). 5. Biological spectroscopyby lain D. Campbell, Raymond A. Dwek 1. General Bio:http://www.biology.arizona.edu/DEFAULT.html 2. Spectroscopy: http://www.cis.rit.edu/htbooks/nmr/inside.htm 3. Electrophoresis: http://www.cis.rit.edu/htbooks/nmr/inside.htm 4. Online biophysics programs: http://www.ces.ntml 				

At the end of the course, the student will be able to:

CO1	Understand the structural organization and function of living cells and should able to apply the cell signaling mechanism and its electrical activities.	K2, K3
CO2	Comprehension of the role of biomolecular conformation to function.	K1
CO3	Conceptual understanding of the function of biological membranes and also to understand the functioning of nervous system.	K2, K5
CO4	To know the effects of various radiations on living systems and how to prevent ill effects of radiations.	K1, K5
CO5	Analyze and interpret data from various techniques viz., spectroscopy, crystallography, chromatography etc.,	K4
K1 - F	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	1

CO/PO	PO				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	М	S	М	S	S	S	М	М
CO2	S	М	S	М	М	S	М	М	М	S
CO3	М	S	S	S	М	М	М	S	S	M
CO4	М	М	М	М	S	М	S	S	М	S
CO5	S	М	S	М	S	S	М	S	М	S

SEMESTER-II	EC IV - SOLAR ENERGY UTILIZATION	Course Code:
Instruction Hours:4	Credits: 3	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating	
COURSE OBJECTIVES	 To impart fundamental aspects of solar energ To give adequate exposure to solar energy rel To harness entrepreneurship skills To understand the different types of solar ce to the different sectors of society To develop an industrialist mindset by utilizin energy 	y utilization. ated industries ells and channelizing them ng renewable source of

UNITS	Course Details	
UNIT I: HEAT TRANSFER & RADIATION ANALYSIS	Conduction, Convection and Radiation – Solar Radiation at the earth's surface - Determination of solar time – Solar energy measuring instruments.	12 Hrs
UNIT II: SOLAR COLLECTORS	Physical principles of conversion of solar radiation into heat flat plate collectors - General characteristics – Focusing collector systems – Thermal performance evaluation of optical loss.	12 Hrs
UNIT III: SOLAR HEATERS	Types of solar water heater - Solar heating system – Collectors and storage tanks – Solar ponds – Solar cooling systems.	12 Hrs
UNIT IV: SOLAR ENERGY CONVERSION	Photo Voltaic principles – Types of solar cells – Crystalline silicon/amorphous silicon and Thermo - electric conversion - process flow of silicon solar cells- different approaches on the process- texturization, diffusion, Antireflective coatings, metallization.	12 Hrs
UNIT V: NANOMATER IALS IN FUEL CELL APPLICATIO NS	Use of nanostructures and nanomaterials in fuel cell technology - high and low temperature fuel cells, cathode and anode reactions, fuel cell catalysts, electrolytes, ceramic catalysts. Use of Nano technology in hydrogen production and storage. Industrial visit – data collection and analysis - presentation	12 Hrs
TEXT BOOKS	 Solar energy utilization -G.D. Rai –Khanna publishers – Delhi 1987. Maheshwar Sharon, Madhuri Sharon, Carbon "Nano forms and Applica Graw-Hill, 2010. Soteris A. Kalogirou, "Solar Energy Engineering: Processes and Academic Press, London, 2009 	utions", Mc Systems",

	4. Tiwari G.N, "Solar Energy - Fundamentals Design, Modelling and applications,							
	Narosa Publishing House, New Delhi, 2002							
	Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company Ltd., New Delhi,							
	1997.							
REFERENCE	1. Energy – An Introduction to Physics – R.H.Romer,							
BOOKS	W.H.Freeman.(1976)							
	2. Solar energy thermal processes – John A.Drife and William. (1974)							
	3. John W. Twidell& Anthony D.Weir, 'Renewable Energy							
	Resources,2005							
	4. John A. Duffie, William A. Beckman, Solar Energy: Thermal							
	Processes,							
	4th Edition, john Wiley and Sons, 2013							
	5. Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John							
	Wiley and Sons,2007.							
WEB	1. https://pdfs.semanticscholar.org/63a5/a69421b69d2ce9f359bbfc86c6							
RESOURCES	<u>3556f9a4fb</u>							
	2. <u>https://books.google.vg/books?id=l-</u>							
	XHcwZo9XwC&sitesec=buy&source=gbs_vpt_read							
	3. www.nptel.ac.in/courses/112105051							
	4. <u>www.freevideolectures.com</u>							
	5. <u>http://www.e-booksdirectory.com</u>							

At the end of the course, the student will be able to:

CO1	Gained knowledge in fundamental aspects of solar energy utilization	K1			
CO2	Equipped to take up related job by gaining industry exposure	К3			
CO3	Develop entrepreneurial skills	K5			
CO4	Skilled to approach the needy society with different types of solar cells	K4			
CO5	Gained industrialist mindset by utilizing renewable source of energy	K2, K3			
K1 - Rer	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;				

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	М	S	М	S	S	S	М	М
CO2	S	М	S	М	М	S	М	М	М	S
CO3	М	S	S	S	М	М	М	S	S	М
CO4	М	М	М	М	S	М	S	S	М	S
CO5	S	М	S	М	S	S	М	S	М	S

SEMESTER-II	AECC II - ELECTRONIC DEVICES AND CIRCUITS	Course Code: MPAEC2						
Instruction Hours: 2	Credits: 2	Exam Hours: 3						
Internal Marks -25	External Marks-75	Total Marks: 100						
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating							
COURSE OBJECTIVES	 To understand the characteristics of diodes, transistors andtheir operatio To learn the performance of special of DIAC. To gain knowledge on small-signal am To learn the VI characteristics of semi To appreciate the small signal amplifie 	 To understand the characteristics of semiconductor diodes, transistors andtheir operations. To learn the performance of special devices like SCR, TRIAC and DIAC. To gain knowledge on small-signal amplifiers at low frequency. To learn the VI characteristics of semiconductor diodes in detail. To appreciate the small signal amplifier at low frequency. 						

UNITS	Course Details						
	SEMICONDUCTOR DIODES:	4 Hrs					
UNIT – I	p-n Junction Diode: Theory of p-n junction diode - Energy band diagram of p-n diode - VI characteristics - Static and dynamic resistances - Diode equivalent circuits - Diode logic circuits and diode clipper circuits. Zener Diode: VI characteristics - Breakdown mechanism - Zener diode as a voltage regulator. Backward diode: VI characteristics						
UNIT – II	SPECIAL PURPOSE DEVICES: Tunnel Diode - Photo Diode - Varactor Diode - Schottky Diode – Operation - VI characteristics applications - Principle of operation and characteristics of SCR. SCR specification - SCR control circuits -The TRIAC and DIAC.	4 Hrs					
UNIT – III	TRANSISTOR: Characteristics - Current components Current gain: α and β - Variation of transistor parameter with temperature and current level - Operating point - Hybrid model - h-parameter equivalent circuits. DC and AC analysis of singlestage CE - Emitter follower and CB amplifiers - AC and DC load	4 Hrs					

	FIELD EFFECT TRANSISTOR & UJT:	4 Hrs						
UNIT – IV	JFET& MOSFET- Construction and operation - Noise performance of FET - Biasing of JFET's and MOSFET's - Low Frequency single stage JFET amplifiers - FET as voltage variable resistor and active load -UJT- characteristics - parameters and specification - UJT as relaxation Oscillator.							
UNIT – V	SMALLSIGNALAMPLIFIERSATLOWFREQUENCY:Analysis of BJT and FET multistage amplifier - DC and RC coupled amplifiers - Frequency response of single stage - multistage amplifiers - Analysis of differential amplifiers - Miller's theorem.							
TEXT BOOKS	 D. A. Bell, Electronic Devices and Circuits (Oxford University Press, Oxford,2008). S. Salivahanan, N. S. Kumar and A. Vallavaraj, Electronic Devices andCircuits (McGraw Hill, New Delhi, 2016). J. Millman, C. Halkias and C. D. Parikh, Integrated Electronics: Analog andDigital Circuits and Systems (McGraw Hill, New Delhi, 2017). 							
REFERE NCES:	 S. L. Gupta and V. Kumar, Hand Book of Electronics (Pragati Prakashan,Meerut, 2013). S. M. Sze, Y. Li and K. K. Ng, Physics of Semiconductor Devices (Wiley, NewJersey, 2021). G. S. N. Raju, Electronic Devices and Circuits (I.K. International Publications,New Delhi, 2008). B. V. Rao and K. R. Rajeswari, Electronic Devices and Circuits (Pearson, NewDelhi, 2007). B. P. Singh and R. Singh, Electronic Devices and Circuits (Pearson, New York, 2012). K. L. Kishore, Electronic Devices and Circuits (BS Publisher, Hyderabad, 2016). A. K. Maini and V. Agarwal, Electronic Devices and Circuits (Wiley, New Delhi, 2009). T. L. Floyd, Electronic Devices (Pearson, New Delhi, 2021). M. Lakshmanan and K. Murali, Chaos in Nonlinear Oscillators (WorldScientific, Singapore, 1996). J. C. Sprott and W. J. C. Thio, Elegant Circuits: Simple Chaotic Oscillators 							
NCES:	 Circuits (Pearson, New York, 2012). 6. K. L. Kishore, Electronic Devices and Circuits (BS Publisher, Hyderabad, 2016). 7. A. K. Maini and V. Agarwal, Electronic Devices and Circuits (Wiley, New Delhi, 2009). 8. T. L. Floyd, Electronic Devices (Pearson, New Delhi, 2021). 9. M. Lakshmanan and K. Murali, Chaos in Nonlinear Oscillators (WorldScientific, Singapore, 1996). 10. J. C. Sprott and W. J. C. Thio, Elegant Circuits: Simple Chaotic Oscillators (World Scientific, Singapore, 2022). 							

WEB RESOURCES	 <u>https://nptel.ac.in/courses/108108112</u> <u>https://archive.org/download/ElectronicDevicesAnd</u> <u>CircuitTheory/Electroni</u> <u>c%20Devices%20and%20Circuit%20Theory.pdf</u> 	
------------------	---	--

At the end of the course, the student will be able to:

CO1	 Know the VI characteristics of semiconductor diodes in detail. 	K1
CO2	 Acknowledge the operation and characteristics of particular electronicsdevices with a specific purpose. 	К3
CO3	 Comprehend the characteristics, operation and stability of transistor. 	K5
CO4	 Understand the construction and operation of FET & UJT. 	K4
CO5	• Appreciate the small signal amplifier at low frequency.	K2, K3
K1 - Ren	nember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	S	S	М	S	S	S	М	S
CO2	S	М	S	М	М	S	М	М	М	S
CO3	М	S	S	S	М	S	S	S	S	М
CO4	М	М	S	М	S	М	S	S	М	М
CO5	S	М	S	М	S	S	М	S	S	М

SEMESTER-II	SEC II - PHYSICS OF NANOSCIENCE AND TECHNOLOGY	Course Code:					
Instruction Hours: 2	Credits: 2	Exam Hours: 3					
Internal Marks -25	External Marks-75	Total Marks: 100					
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating						
COURSE OBJECTIVES	 Physics of Nanoscience and Technology is creation, manipulation and applications at na To provide the basic knowledge about nanos To learn the structures and properties of nano To acquire the knowledge about synthesis moderate characterization techniques and its application 	cs of Nanoscience and Technology is concerned with the study on, manipulation and applications at nanometer scale. ovide the basic knowledge about nanoscience and technology. arn the structures and properties of nanomaterials. quire the knowledge about synthesis methods and cterization techniques and its applications.					

UNITS	Course Details	
UNIT I:	Fundamentals of NANO Classification of Nanomaterials Metal	4 Hrs
FUNDAMENTALS OF	and Semiconductor Nanomaterials - 2D, 1D, 0D nanostructured	
NANOSCIENCE AND	materials - Quantum dots- Surface effects of nanomaterials.	
TECHNOLOGY		
UNIT II: PROPERTIES OF NANOMATERIALS	Physical properties of Nanomaterials: Melting points, specific heat capacity, and lattice constant - Mechanical behavior: Elastic properties – strength - Optical properties: - Surface Plasmon Resonance - Conductivity, Ferroelectrics and dielectrics - Magnetic properties – super para magnetism.	4 Hrs
UNIT III: SYNTHESIS AND FABRICATION	Physical vapour deposition - Chemical vapour deposition - sol-gel – Wet deposition techniques - electrochemical deposition method – Plasma arching- ball milling technique-pulsed laser deposition - Nanolithography: photolithography– Nanomanipulator.	4 Hrs
UNIT IV: CHARACTERIZATION TECHNIQUES	Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS) - UV-visible spectroscopy - Scanning electron microscopy (SEM) - Transmission electron microscopy (TEM) - Scanning probe microscopy (SPM) - Scanning tunneling microscopy (STM).	4 Hrs
UNIT V: APPLICATIONS OF NANOMATERIALS	Sensors: Nanosensors based on optical and physical properties - Electrochemical sensors. Nano Electronics: Nanobots - display screen - Carbon Nanotube Emitters – Photocatalytic application: Air purification, water purification -Medicine: Imaging of cancer cells – biological tags - drug delivery - photodynamic therapy - Energy: fuel cells - rechargeable batteries.	4 Hrs
TEXT BOOKS	 A textbook of Nanoscience and Nanotechnology, Pradeep T McGraw-Hill Publishing Co. (2012). Principles of Nanoscience and Nanotechnology, M.A. Shah, 	., Tata Tokeer

	Ahmad, Narosa Publishing House Pvt Ltd., (2010).					
	3. Introduction to Nanoscience and Nanotechnology, K. K. Chattopadhyay					
	and A.N. Banerjee, PHI Learning Pvt. Ltd., New Delhi, (2012).					
	1. Nanostructures and Nanomaterials - Huozhong Gao - Imperial College					
	Press (2004).					
	2. Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley					
	Publishing Inc. USA					
	3. Nano particles and Nano structured films; Preparation, Characterization					
REFERENCE BOOKS	and Applications, J. H. Fendler John Wiley and Sons. (2007)					
	4. Textbook of Nanoscience and Nanotechnology, B. S. Murty, et al.,					
	Universities Press. (2012)					
	5. The Nanoscope (Encyclopedia of Nanoscience and Nanotechnology), Dr.					
	Parag Diwan and Ashish Bharadwaj (2005) Vol. IV - Nanoelectronics					
	Pentagon Press, New Delhi.					
	1. www.its.caltec.edu/feyman/plenty.html					
	2. http://www.library.ualberta.ca/subject/nanoscience/guide/index.cfm					
WEB RESOURCES	3. <u>http://www.understandingnano.com</u>					
	4. <u>http://www.nano.gov</u>					
	5. <u>http://www.nanotechnology.com</u>					

At the end of the course, the student will be able to:

CO1	Understand the basic of nanoscience and explore the different types of nanomaterials and should comprehend the surface effects of the nanomaterials.	K1, K2
CO2	Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterials.	K1
CO3	Understand the process and mechanism of synthesis and fabrication of nanomaterials.	K2, K3
CO4	Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.	K4
CO5	Apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.	К3
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	М	S	М	S	S	S	М	М
CO2	S	М	S	М	М	S	М	S	М	S
CO3	S	S	S	S	М	S	S	S	S	М

CO4	М	М	S	М	S	М	S	S	S	М
CO5	S	М	S	М	S	S	М	S	М	М

SEMESTER-II	ECC II – VAC I RESEARCH PUBLICATION AND ETHICS	Course Code:
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating	
COURSE	• To provide the fundamental knowledg	ge on basics of
OBJECTIVES	research ethics, research integrity and	publication ethics.
	 To explore citation databases, open ad research metrics(citations, h-index, Im 	ccess publications, ppact Factor, etc.)
UNIT – I	PHILOSOPHY AND ETHICS:	4 Hrs
	Introduction to philosophy: definition - Na and scope - Concept - Branches –Ethics: Definition - Moral philosophy - Nature of judgements and reactions.	ature moral
UNIT – II	SCIENTIFIC CONDUCT:	
	 Ethics with respect to science and research Intellectual honesty and researchintegrity – Scientific misconducts: Falsification, Fabric and Plagiarism (FFP) – Redundant Publications: duplicate and o publications, salami slicing – Selective reporting and misrepresentation 	- eation overlapping 4 Hrs of data.
UNIT – III	PUBLICATION ETHICS:	4 Hrs
	Publication ethics: definition, intro- importance – Conflicts of interest – Publication misconduct: definition, problems that lead to unethical behavior an versa, types – Violation of publication authorship and contributorship – Identific publication misconduct, complaints and a Predatory publisher and journals.	duction and concept, ad vice – a ethics, ation of appeals –

		4 Hrs
UNIT – IV	OPEN ACCESS PUBLISHING AND PLAGIARISM TOOLS:	
	SHERPA/RoMEO online resource to check publisher copyright & self – archiving policies – Software tool to identify predatory publications developed by SPPU – Journal finger / journal suggestion tolls viz. JANE, Elsevier Journal Finder, Springer, Journal Suggester, etc. Use of plagiarism software like Turnitin, Urkund and other open source software tools.	
UNIT – V	DATABASES AND RESEARCH METRICS:	4 Hrs
	Databases: Indexing databases, Citation databases: Web of Science, Scopus, etc. Research Metrics: Impact Factor of journal as per journal Citations Report, SNIP,SJR, IPP, Citation score – Metrics: h-index, g index, i10 Index, altmetrics.	
TEXT BOOKS	1. K. Ravichandran, A. T. Ravichandran, M. Ayyana	r and P.
	 Kavitha, <i>Research Methodology and Publication</i> (Jazym Publications, Tiruchirappalli, 2022). N. H. Steneck, <i>Introduction to the Responsible Con</i> <i>Research</i> (Office of Research Integrity, Maryland, 20 P. Oliver, <i>Student's Guide to Research Ethics</i> University Press, United Kingdom, 2003). 	<i>Ethics</i> <i>nduct of</i> 907). (Open
REFERENCES:	 A. E. Shamoo and D. B. Resnik, <i>Responsible Con</i> <i>Research</i> (Oxford University Press, Oxford, 2003). A. B.H. Dursaton and M. Poole, <i>Thesis and Ass</i> <i>Writing</i> (Wiley Eastern, New York, 1997). B. Gustavii, <i>How to Write and Illustrate Scientific</i> (Cambridge University Press, Cambridge, 2008). K. S. Bordens and B. B. Abbott, <i>Research Des</i> <i>Methods</i> (McGraw Hill,New York, 2008). A. M. Graziano and M. L. Raulin, <i>Research Des</i> <i>Process of Inquiry</i> i. (Pearson, New York, 2020). 	nduct of ignment Papers? ign and Methods – A
WEB RESOURCES	 https://ori.hhs.gov/sites/default/files/rcrintro.pdf https://www.enago.co.kr/academy/wp- content/uploads/2018/05/Research_Ethi cs.pub_V2.pdf 	

At the end of the course, the student will be able to:

CO1	•	Know about the publication ethics and publication misconducts.	K1, K2				
CO2	•	Understand the research ethics and research integrity.	K1				
CO3	•	Understand research misconduct and predatory publications.	K2, K3				
CO4	•	Differentiate citation databases, open access publication and researchmetrics.	K4				
CO5	•	Use plagiarism and open source software tools.	K3				
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	М	M	M	M	М	M	S	S	M	M
CO2	S	М	S	М	М	S	М	S	М	S
CO3	S	М	S	S	М	S	S	S	S	М
CO4	М	М	S	М	S	М	S	S	S	S
CO5	S	М	S	М	S	S	S	S	S	S

SEMESTER-III

SEMESTER-III	CONDENSED MATTER PHYSICS	Course Code:
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating	
COURSE OBJECTIVES	 To describe various crystal structures, symmetry different types of bonding. To construct reciprocal space, understand apply it to concept of specific heat. To critically assess various theories of ele impact in distinguishing solids. Outline different types of magnetic magnetic magnetic inderlying phenomena. Elucidation of concepts of superconductivity relate to current areas of research. 	metry and to differentiate the lattice dynamics and ctrons in solids and their aterials and explain the r, the underlying theories –

UNITS	Course Details	
UNIT I: CRYSTAL PHYSICS	Types of lattices - Miller indices – Symmetry elements and allowed rotations - Simple crystal structures – Crystal diffraction - Bragg's law – Scattered Wave Amplitude - Reciprocal Lattice (sc, bcc, fcc). Diffraction Conditions - Laue equations - Brillouin zone - Structure factor - Atomic form factor - Inert gas crystals - Madelung constant - Types of crystal binding (general ideas).	18 Hrs
UNIT II: LATTICE DYNAMICS	Lattice with two atoms per primitive cell - First Brillouin zone - Quantization of lattice vibrations - Debye's theory of lattice heat capacity - Thermal Conductivity - Umkalapp processes.	18 Hrs
UNIT III: THEORY OF METALS AND SEMICONDUCTORS	Free electron gas in three dimensions - Electronic heat capacity - Wiedemann-Franz law - Band theory of metals and semiconductors - Bloch theorem - Kronig-Penney model - Semiconductors - Intrinsic carrier concentration - Mobility - Impurity conductivity – Impurity states - Hall effect - Fermi surfaces and construction - de Hass- van Alphen effect .	18 Hrs

UNIT IV: MAGNETISM	Diamagnetism - Quantum theory of paramagnetism - Rare earth ion - Hund's rule - Quenching of orbital angular momentum - Adiabatic demagnetization - Quantum theory of ferromagnetism - Curie point - Exchange integral - Heisenberg's interpretation of Weiss field - Ferromagnetic domains - Bloch wall - Spin waves - Quantization - Magnons - Thermal excitation of magnons - Curie temperature and susceptibility of ferrimagnets - Theory of antiferomagnetism - Neel temperature.	18 Hrs
UNIT V: Superconductivity	 Experimental facts: Occurrence - Effect of magnetic fields - Meissner effect - Critical field - Critical current - Entropy and heat capacity - Energy gap - Microwave and infrared properties - Type I and II Superconductors. Theoretical Explanation: Thermodynamics of super conducting transition - London equation - Coherence length - Isotope effect - Cooper pairs - Bardeen Cooper Schrieffer (BCS) Theory - BCS to Bose - Einstein Condensation (BEC) regime- Nature of paring and condensation of Fermions. Single particle tunneling - Josephson tunneling - DC and AC Josephson effects - High temperature Superconductors - SQUIDS. 	18 Hrs
TEXT BOOKS	 C. Kittel, 1996, Introduction to Solid State Physics, 7th Edition, Wiley, New York. Rita John, Solid State Physics, Tata Mc-Graw Hill Publication. A. J. Dekker, Solid State Physics, Macmillan India, New Delhi. 	
REFERENCE BOOKS	 J. S. Blakemore, 1974 , Solid state Physics, 2nd Edition, W.B. Saunder, Philadelphia H. M. Rosenburg, 1993, The Solid State, 3rd Edition, Oxford University Press, Oxford. J. M. Ziman, 1971, Principles of the Theory of Solids, Cambridge University Press, London. C. Ross-Innes and E. H. Rhoderick, 1976, Introduction to Superconductivity, Pergamon, Oxford. J. P. Srivastava, 2001, Elements of Solid State Physics, Prentice-Hall of India, New Delhi. 	
WEB SOURCES	 <u>http://www.physics.uiuc.edu/research/electronicstructure/389/389-cal.html</u> <u>http://www.cmmp.ucl.ac.uk/%7Eaph/Teaching/3C25/index.html</u> <u>https://www.britannica.com/science/crystal</u> <u>https://www.nationalgeographic.org/encyclopedia/magnetism/</u> <u>https://www.brainkart.com/article/Super-Conductors_6824/</u> 	

At the end of the course, the student will be able to:

CO1	Student will be able to list out the crystal systems, symmetries allowed in a system and also the diffraction techniques to find the crystal structure	K1			
CO2	Students will be able to visualize the idea of reciprocal spaces, Brillouin Zone and their extension to band theory of solids.	K1, K2			
CO3	Student will be able to comprehend the heat conduction in solids	K3			
CO4	Student will be able to generalize the electronic nature of solids from band theories.	K3, K4			
CO5	Student can compare and contrast the various types of magnetism and conceptualize the idea of superconductivity.	K5			
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate					

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	М	М	М	S	S	М	М	М
CO2	S	М	S	М	М	S	М	S	М	S
CO3	S	М	S	S	М	S	S	S	S	М
CO4	М	М	S	S	S	М	S	М	S	М
CO5	S	М	S	М	S	S	М	S	S	S

SEMESTER-III	ELECTROMAGNETIC THEORY	Course Code:				
Instruction Hours: 6 Internal Marks -25	Credits: 4 External Marks-75	Exam Hours: 3 Total Marks: 100				
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating					
COURSE OBJECTIVES	 To acquire knowledge about boundary conditions between two media and the technique of method of separation of variables To understand Biot – Savart's law and Ampere's circuital law To comprehend the physical ideas contained in Maxwell's equations, Coulomb & Lorentz gauges, conservation laws To assimilate the concepts of propagation, polarization, reflection and refraction of electromagnetic waves To group the concept of plagme as the fourth state of metter 					

UNITS	Course Details	
UNIT I: ELECTROSTATICS	Boundary value problems and Laplace equation – Boundary conditions and uniqueness theorem – Laplace equation in three dimension – Solution in Cartesian and spherical polar coordinates – Examples of solutions for boundary value problems. Polarization and displacement vectors - Boundary conditions - Dielectric sphere in a uniform field – Molecular polarizability and electrical susceptibility – Electrostatic energy in the presence of dielectric – Multipole expansion.	18 Hrs
UNIT II: MAGNETOSTATICS	Biot-Savart's Law - Ampere's law - Magnetic vector potential and magnetic field of a localized current distribution - Magnetic moment, force and torque on a current distribution in an external field - Magneto static energy - Magnetic induction and magnetic field in macroscopic media - Boundary conditions - Uniformly magnetized sphere.	18 Hrs

	Faraday's laws of Induction - Maxwell's displacement current -	18 Hrs
UNIT III:	Maxwell's equations - Vector and scalar potentials - Gauge	
	invariance - Wave equation and plane wave solution- Coulomb	
WIAXWELL	and Lorentz gauges - Energy and momentum of the field -	
EQUATIONS	Poynting's theorem - Lorentz force - Conservation laws for a	
	system of charges and electromagnetic fields.	
	Plane wayes in non-conducting modia Linear and signal	10 Uro
	polarization reflection and refraction at a plane interface -	10 113
UNIT IV:	Wayes in a conducting medium - Propagation of wayes in a	
WAVE	rectangular wave guide.	
DDODACATION	5 5	
PROPAGATION	Inhomogeneous wave equation and retarded potentials -	
	Radiation from a localized source - Oscillating electric dipole	
UNIT V:	The Boltzmann Equation - Simplified magneto-hydrodynamic	18 Hrs
	equations - Electron plasma oscillations - The Debye shielding	
ELEMENTARY	problem - Plasma confinement in a magnetic field - Magneto-	
PLASMA PHYSICS	hydrodynamic waves - Alfven waves and magnetosonic waves.	
	1 D L Griffiths 2002 Introduction to Electrodynamics	
	3 rd Edition Prentice-Hall of India New Delhi	
	2. J. R. Reitz, F. J. Milford and R. W. Christy, 1986.	
	Foundations of Electromagnetic Theory, 3 rd edition,	
TEXT BOOKS	Narosa Publishing House, New Delhi.	
	3. J. D. Jackson, 1975, Classical Electrodynamics, Wiley	
	Eastern Ltd. New Delhi.	
	1. W. Panofsky and M. Phillips, 1962, Classical Electricity	
	and Magnetism, Addison Wesley, London.	
	2. J. D. Kraus and D. A. Fleisch, 1999, <i>Electromagnetics with</i>	
	Applications, 5 th Edition, WCB McGraw-Hill, New York.	
DEEEDENICE	3. B. Chakraborty, 2002, Principles of Electrodynamics, Books and Allied Kolkata	
ROOKS	A P Feynman R B Leighton and M Sands 1998 The	
DOORS	Feynman Lectures on Physics, Vols. 2. Narosa Publishing	
	House, New Delhi.	
	5. Andrew Zangwill, 2013, Modern Electrodynamics,	
	Cambridge University Press, USA.	
	1. <u>http://www.plasma.uu.se/CED/Book/index.html</u>	
WEB SOURCES	2. <u>http://www.thphys.nuim.ie/Notes/electromag/frame-</u>	
	notes.html	
	 <u>http://www.thphys.nuim.ie/Notes/em-topics/em-</u> 	

	topics.html	
4.	http://dmoz.org/Science/Physics/Electromagnetism/Cou	
	rses and Tutorials/	
5.	https://www.cliffsnotes.com/study-	
	guides/physics/electricity-and-magnetism/electrostatics	

At the end of the course the student will be able to:

CO1	Solve the differential equations using Laplace equation and to find solutions for boundary value problems	K1, K5
CO2	Use Biot-Savart's law and Ampere circuital law to find the magnetic induction & magnetic vector potential for various physical problems	K2, K3
CO3	Apply Maxwell's equations to describe how electromagnetic field behaves in different media	K3
CO4	Apply the concept of propagation of EM waves through wave guides in optical fiber communications and also in radar installations, calculate the transmission and reflection coefficients of electromagnetic waves	K3, K4
CO5	Investigate the interaction of ionized gases with self-consistent electric and magnetic fields	K5
K1 - Ren	nember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	M	М	М	S	S	S	S	S	М	M
CO2	S	S	S	М	М	S	М	S	М	S
CO3	S	М	S	S	S	S	S	S	S	S
CO4	М	М	S	S	М	М	S	М	S	М
CO5	S	Μ	S	М	S	S	Μ	М	S	S

SEMESTER-III	PRACTICAL III MICROPROCESSOR AND PROGRAMMING IN C++	Course Code:		
Instruction Hours:	Credits: 4	Exam Hours: 3		
Internal Marks -25	External Marks-75	Total Marks: 100		
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating			
COURSE OBJECTIVES	• To develop programming skills in micr C++ programming to solve somemathe problems and learn their applications.	oprocessor and matical		
	 A. Microprocessor (8085) 1. Finding the largest and smallest num 2. Arranging a set of numbers in ascendorders. 3. Study of multibyte decimal addition at Study of seven segment display. 5. Study of DAC interfacing (DAC 090) 6. Study of ADC interfacing (ADC 080) 7. Study of programmable interrupt cont 8. Traffic control system. 9. Digital clock. 10. Generation of square and sine waves 11. Digital thermometer (temperature cont 12. Control of stepper motor using microp B. C++ Programming 1. Least-squares curve fitting – Straight 2. Least-squares curve fitting – Exponer 3. Real roots of one-dimensional nonline Raphson method. 4. Complex roots of one-dimensional nonline Raphson method. 5. Interpolation – Lagrange method. 6. Numerical integration – Composite traftion – Composite S 8. Solution of a first-order ODE – Eu 9. Solution of a first-order ODE – Four method. 10. Gaussian random number generation method. 11. Calculation of mean and standard der uniform random numbers. 12. Computation of eigenvalues of linear oscillator by numerically solving Sch 	bers in a data array. ing and descending and subtraction. 0). 9). roller (IC 8259). using DAC 0800. roller). processor. -line fit. ntial fit. ear equations - Newton onlinear equations - apezoidal rule. impson's 1/3 rule. aler method. rth-order Runge-Kutta - Box and Muller viation of a set of harmonic rödinger		

REFERENC ES:	1. Nagoorkani, 8085 Microprocessor and its Applications (McGraw Hill, New Delhi,2017).	
	 Stroustrup, Programming: Principles and Practice Using C++ (Addison Wesley, Massachusetts, 2014). 	

At the end of the course the student will be able to:

CO1	•	Acquire hands-on knowledge of Microprocessor programming	K1,
			K5
CO2	•	Understand DAC and ADC interfacing.	K2,
			K3
CO3	•	Gain Knowledge of Traffic control systems.	К3
CO4	•	Acquire hands-on knowledge of C++ Programming.	K3,
			K4
CO5	•	Determine the eigenvalues of the harmonic oscillator numerically.	K5
K1 - Ren	nember;	K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	S	М	S	М	М	S	М	М
CO2	S	S	S	М	М	S	М	S	М	S
CO3	S	S	S	S	S	S	S	S	М	S
CO4	М	М	S	S	М	S	S	М	S	М
CO5	S	М	S	М	М	S	М	М	S	S

SEMESTER-III	EC V- Structured and Object Oriented Programming Lab	Course Code:					
Instruction Hours:	Credits: 3	Exam Hours: 3					
Internal Marks -25	External Marks-75	Total Marks: 100					
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating						
COURSE OBJECTIVES	 To impart the basic constructs in structured programming and object – oriented programming paradigms. To inculcate the insights and benefits in accessing memory location by implementing real world problems. To solve real world problems through appropriate programming paradigms To learn various elements of objects-oriented programming paradigm; Propose solutions through inheritance and polymorphism. To application of modular programming approach; create user 						
	Indicative Experiments						
	 Programs using basic control structures, brand Experiment the use of 1-D, 2-D arrays and St Demonstrate the application of pointers Experiment structures and unions Programs on basic Object-Oriented Programm Demonstrate various categories of inheritance Program to apply kinds of polymorphism Develop generic templates and standard temp 	grams using basic control structures, branching and looping periment the use of 1-D, 2-D arrays and Strings and Functions monstrate the application of pointers periment structures and unions ograms on basic Object-Oriented Programming constructs monstrate various categories of inheritance ogram to apply kinds of polymorphism velop generic templates and standard template Libraries					

At the end of the course, the student will be able to:

CO1	Understand different programming language	K1
CO2	Recognize the application of modular programming approach; create user defined data types and idealize the role of pointers.	K2
CO3	Comprehend various elements of objects-oriented programming paradigm; Propose solutions through inheritance and polymorphism;	K3
CO4	constructs and decision – making statements; manipulate data as a group.	K3, K4
	Identify the appropriate programming techniques	K2,
CO5		K5
K1 - F	Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	S	М	S	М	М	S	М	М
CO2	S	М	S	М	М	S	М	S	М	S
CO3	S	S	S	S	S	S	М	S	М	S
CO4	S	М	S	М	М	S	S	М	S	S
CO5	S	М	S	М	М	S	М	М	S	М

SEMESTER-III	CIM-SOLID WASTE MANAGEMENT	Course Code:					
Instruction Hours: 4	Credits: 3	Exam Hours: 3					
Internal Marks -25	External Marks-75	Total Marks: 100					
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating						
COURSE OBJECTIVES	 To gain basic knowledge in solid waste management procedures To gain industry exposure and be equipped to take up a job. To harness entrepreneurial skills. To analyze the status of solid waste management in the nearby areas. To sensitize the importance of healthy practices in waste managements 						

UNITS	Course Details					
	SOLID WASTE MANAGEMENT					
UNIT I:	Introduction - Definition of solid waste - Types – Hazardous Waste:					
	Resource conservation and Renewal act – Hazardous Waste:	12 113				
	Municipal Solid waste and non-municipal solid waste.					
	SOLID WASTE CHARACTERISTICS					
UNIT II.	Solid Waste Characteristics: Physical and chemical characteristics -	12 Hrs				
	SWM hierarchy - factors affecting SW generation					
	TOOLS AND EQUIPMENT					
UNIT III:	Tools and equipment - Transportation - Disposal techniques -	12 Hrs				
	Composting and land filling technique					
	ECONOMIC DEVELOPMENT					
UNIT IV.	SWM for economic development and environmental protection					
	Linking SWM and climate change and marine litter.					
	INDUSTRIAL VISIT					
UNIT V:	SWM Industrial visit – data collection and analysis - presentation	12 Hrs				
	1. Handbook of Solid Waste Management /Second Edition,					
	George Tchobanoglous, McGraw Hill (2002).					
	2. Prospects and Perspectives of Solid Waste Management,					
TEXT BOOKS	Prof. B BHosett, New Age International (P) Ltd (2006).					
	3. Solid and Hazardous Waste Management, Second Edition,					
	M.N Rao, BSP /BS Publications Books (.(2020)					

	1.	Municipal Solid Waste Management, Christian Ludwig,
		2012
	2.	Solid Waste Management Bhide A. D Indian National
		Scientific Documentation Centre, New Delhi Edition 1983 ASIN: B0018MZ0C2
REFERENCE BOOKS	3.	Solid Waste Techobanoglous George; Kreith, Frank McGraw
		Hill Publication, New Delhi 2002, ISBN 9780071356237
	4.	Environmental Studies Manjunath D. L. Pearson Education
		Publication, New Delhi, 20061SBN-I3: 978-8131709122
	5.	Solid Waste Management Sasikumar K. PHI learning, New
		Delhi, 2009 ISBN 8120338693
	1.	https://www.meripustak.com/Integrated-Solid-Waste-
		Management-Engineering-Principles-And-Management-Issues-
		<u>125648</u>
	2.	https://testbook.com/learn/environmental-engineering-
		solid-waste-management/
WEB SOURCES	3.	https://www.meripustak.com&gclid=Cj0KCQjwuuKXBhCRAR
		<u>IsA-</u>
		gM0iVpismAJN93CHA1sX6NuNeOKLXfQJ jxHCOVH3QXjJ1iA
		Cq30KofoaAmFsEALw_wcB
	4.	https://images.app.goo.gl/tYiW2gUPfS2cxdD28
	5.	https://amzn.eu/d/5VUSTDI

At the end of the course, the student will be able to:

CO1	Gained knowledge in solid waste management	K1		
CO2	Equipped to take up related job by gaining industry exposure	K5		
CO3	Develop entrepreneurial skills	K3		
CO4	Will be able to analyze and manage the status of the solid wastes in the nearby areas	K4		
CO5	Adequately sensitized in managing solid wastes in and around his/her locality	K5		
K1 - Re	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;			

CO/PO PO				PSO						
	1	2	3	4	5	1	2	3	4	5
CO1	S	S	S	М	S	М	М	S	М	S
CO2	S	М	S	М	M	S	S	S	М	S
CO3	S	S	S	S	М	S	М	S	М	S
CO4	S	М	S	М	M	S	S	М	S	S
CO5	S	М	S	М	М	S	М	S	М	М

SEMESTER-III	AECC III- MICROPROCESSOR 8085 AND MICROCONTROLLER 8051	Course Code:
Instruction Hours: 2	Credits: 2	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating	
COURSE OBJECTIVES	 To provide an understanding of the arc microprocessor 8085A To the methods of interfacing I/O devices and To introduce 8085A programming and applic and instruction sets of microcontroller 8051 To Get knowledge of architecture and workin To understand the different applications of microcontroller. 	chitecture and functioning of d memory to microprocessor ations and the architecture ng of 8051 Microcontroller. nicroprocessor and

	Course Details				
UNIT I:	8085 PROGRAMMING, PERIPHERAL DEVICES AND THEIR INTERFACING Instruction set - Addressing modes - Programming techniques - Memory mapped I/O scheme- I/O mapped I/O scheme - Memory and I/O interfacing- Data transfer schemes - Interrupts of 8085 - Programmable peripheral interface (PPI) - Control group and control word- Programmable DMA controller - Programmable interrupt controller – Programmable communication interface - Programmable counter /interval timer.	4 Hrs			
UNIT II:	8085 INTERFACING APPLICATIONS 4 Hrs				
	Seven segment display interface - Interfacing of Digital to Analog converter				
	and Analog to Digital converter - Stepper motor interface - Measurement of				
	quantities (Temperature an strain).				
	8051 MICROCONTROLLERHARDWARE	4 Hrs			
	Introduction – Features of 8051 – 8051 Microcontroller Hardware: Pin-out				
UNIT III:	8051, Central Processing Unit (CPU), internal RAM, Internal ROM, Register set				
	of 8051 – Memory organization of 8051 – Input/Output pins, Ports and				
	Circuits – External data memory and program memory: External program				
	memory, External data memory.				

	8051 INSTRUCTION SET AND ASSEMBLY LANGUAGE PROGRAMMING	4 Hrs			
UNIT IV:	Addressing modes – Data moving (Data transfer) instructions: Instructions to Access external data memory, external ROM / program memory, PUSH and POP instructions, Data exchange instructions – Logical instructions: byte and bit level logical operations, Rotate and swap operations – Arithmetic instructions: Flags, Incrementing and decrementing, Addition, Subtraction, Multiplication and division, Decimal arithmetic – Jump and CALL instructions: Jump and Call program range, Jump, Call and subroutines – Programming.				
	INTERRUPT PROGRAMMING AND INTERFACING TO EXTERNAL WORLD	4 Hrs			
UNIT V:	8051 Interrupts – Interrupt vector table – Enabling and disabling an interrupt – Timer interrupts and programming – Programming external hardware interrupts – Serial communication interrupts and programming – Interrupt priority in the 8051 : Nested interrupts , Software triggering of interrupt. LED Interface Seven segment display interface- Interfacing of Digital to Analog converter and Analog to Digital converter - Stepper motor interface - Measurement of electrical quantities – Voltage and current) Measurement of				
	1. A. NagoorKani, Microprocessors & Microcontrollers, RBA Publications				
TEXT BOOKS	 (2009). 2. A. P. Godse and D. A. Godse, Microprocessors, Technical Publications, Pune (2009). 3. Ramesh Gaonkar, Microprocessor Architecture, Programming and Applications with 8085, Penram International Publishing (2013). 				
REFEREN CE BOOKS	 Douglas V. Hall, Microprocessors and Interfacing programming and Hardware, Tata Mc Graw Hill Publications (2008) Muhammad Ali Mazidi, Janice GillispieMazidi, Rolin D. Mckinlay, The 8051 Microcontroller and Embedded Systems, Pearson Education (2008). Barry B. Brey, 1995, The Intel Microprocessors 8086/8088, 80186, 80286, 80386 and 80486, 3rd Edition, Prentice- Hall of India, New Delhi. J. Uffrenbeck, "The 8086/8088 Family-Design, Programming and Interfacing, Software, Hardware and Applications", Prentice-Hall of India, New Delhi. W. A. Tribel, Avtar Singh, "The 8086/8088 Microprocessors: Programming, Interfacing, Software, Hardware and Applications", Prentice-Hall of India, New Delhi. 				
WEB SOURCE S	 <u>https://www.tutorialspoint.com/microprocessor/microprocessor_8085</u> <u>architecture.html</u> <u>http://www.electronicsengineering.nbcafe.in/peripheral-mapped-io- interfacing/</u> <u>https://www.geeksforgeeks.org/programmable-peripheral-interface- 8255/</u> 				

4.	http://www.circuitstoday.com/8051-microcontroller	
5.	https://www.elprocus.com/8051-assembly-language-programming/	

At the end of the course, the student will be able to:

CO1	Gain knowledge of architecture and working of 8085 microprocessor.	K1
CO2	Get knowledge of architecture and working of 8051 Microcontroller.	K1
CO3	Be able to write simple assembly language programs for 8085A microprocessor.	K2, K3
CO4	Able to write simple assembly language programs for 8051 Microcontroller.	K3, K4
CO5	Understand the different applications of microprocessor and microcontroller.	K3,K 5
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;	

CO/PO	РО				PSO					
	1	2	3	4	5	1	2	3	4	5
CO1	М	S	S	М	S	М	М	S	М	S
CO2	S	М	S	M	М	S	S	S	М	М
CO3	М	S	S	S	М	S	М	S	S	S
CO4	S	S	S	М	S	S	S	М	S	S
CO5	S	М	S	М	М	S	М	S	М	S

SEMESTER-III	SEC III -NANOTECHNOLOGY Course Code:					
Instruction Hours: 2	Credits: 2	Exam Hours	:: 3			
Internal Marks -25	External Marks-75	Total Marks:	100			
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating					
COURSE OBJECTIVES	 The main objectives of this course is to learn about the basics of Nano-science & Nano-technology & its applications Analyze the morphology and size of the nanoparticles using various analytical techniques To Understand different methods of synthesis of nanomaterials using To various physical, chemical and biological approaches To Learn the fundamentals properties of Nano-materials/ quantum dots/Wells/Wires 					
	Course Details		1			
	OVERVIEW OF NANO-SCIENCE Definition of Nano, Nano revolution of the 20th century – emergence and challenges of nano-science and nano-technology- Atomic Structure and atomic size, - large surface to volume ratio, surface effects on the					
UNIT II:	DIFFERENT CLASSES OF NANO-MATERIALS One dimensional, Two dimensional and Three dimensio materials. Quantum dots, Wells and Wires - Bucky Balls Nanotubes	onal nanostructured and Carbon	4 Hrs			
UNIT III:	Nanotubes. 4 Hrs SYNTHESIS OF NANO-MATERIALS 4 Hrs Top down (Nanolithography, CVD, PVD, Ball milling) – bottom up (sol gel 9 bottom up (sol gel					
UNIT IV:	CHARACTERIZATION 4 Hrs Powder X-ray diffraction - Debye-Scherrer technique - Indexing the 4 Hrs powder pattern - Calculation of particle size using Scherer method - Lattice 4 Comparison constant calculations.Microscopic Analysis: Scanning Electron Microscope 4 Comparison (SEM) - EDAX analysis - Principle of Transmission Electron Microscopy 4 Comparison (TEM). 4 Comparison					
UNIT V:	CONTEMPORARY ISSUES 4 Hrs Carbon Nanotubes for energy storage – Nano-materials in waste water 4 Hrs treatment- catalytic process - Dye-sensitized solar cells- Biosensors – Gas 6 as sensor and its types 6 as					
Text Book(s)	1.Nano-crystals: Synthesis, Properties and Applications G.U. Kulkarni, Springer (2007) 2.Nanostructured Materials and Nanotechnology - Hari 2002	- C.N.R. Rao, P.J. Thor Singh Nalwa, Acaden	nas and nic Press,			

	1.	Energy for a sustainable world by L. Freris, D. Infield, Wiley, 2008.				
	2.	Nano-materials for Sustainable Energy by Quan (Ed.), Springer, 2016.				
Reference Books	3.	Nano-materials in Energy Devices by Jun Hieng Kait CRC Press, 2017.				
	4.	Advanced nano-materials and their applications in renewable energy by J. Louise, L. S.Bashir, 2015.				
WEB RESOURCES	http://www.ncpre.iitb.ac.in/slotbooking/SOP/62SOP.pdf					
	https:/	/en.wikipedia.org/wiki/Nanomaterials				
	https://www.nano.gov/you/nanotechnology-benefit					

At the end of the course, the student will be able to:

CO1	1)	Understand the fundamentals properties of Nano-materials/ quantum dots/Wells/Wires	K1			
CO2	2)	Analyze the morphology and size of the nanoparticles using various analytical techniques	K1			
CO3	3)	Evaluate the potential applications of Nano-materials	K2, K3			
CO4	4)	Understand different methods of synthesis of nanomaterials using various physical, chemical and biological approaches	K3, K4			
C05	5)	Understand the fundamentals properties of Nano-materials/ quantum dots/Wells/Wires	K3,K 5			
K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;						

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	М	S	S	М	S	М	М	S	М	S
CO2	М	S	М	М	S	S	S	М	S	М
CO3	М	S	S	S	М	S	М	S	S	S
CO4	М	S	М	М	S	S	М	S	М	S
CO5	S	М	S	М	М	S	М	S	М	S

SEMESTER-III	ECC III – VAC II MEDICAL INSTRUMENTATION	Course Code:		
Instruction Hours:	Credits: 2	Exam Hours: 3		
Internal Marks -25	External Marks-75	Total Marks: 100		
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating			
COURSE OBJECTIVES	 To introduce the basic knowledge on instrumentation. To know about measurement of certai electrical and non-electricalparameter To have a basic knowledge in life ass devices. Understand the Bio potential recorder To explain the medical assistance/tee therapeutic equipments. 	biomedical n important 's. isting and the 's. chniques and	rapeutic	
UNIT – I	Course Details HUMAN PHYSIOLOGICAL SYSTEMS A BIO-POTENTIAL	ND	4 Hrs	
	ELECTRODES Transport of ions through the cell membrane – and action potentials – Bio-electric potentials – of Medical instruments – Components biomedical instrument system – Half cell pot Types of electrodes – Micro electrodes – De needle electrodes – Surface electrodes – Tran – Active transducers – magnetic induction transducers (only).	Resting Design of the cential – pth and nsducers on type		
UNIT – II	 BIO-SIGNAL ACQUISITION AND PHYSIOLOGICAL ASSISTDEVICES Required conditions for physiological amplifiers – Isolation amplifiers Isolation Amplifier Circuit – preamplifier design – Bio-signal analysis Physiological Assist Devices: Pacem Typical ranges of pacemaker parameters - I and implanted pacemakers (comparis Ventricular asynchronous pacemaker Defibrillators – DC Defibrillator – Oxyj –Bubble oxygenators. 	signal – ECG Medical akers – External son) – ers - genators	4 Hrs	
UNIT – III	BIO-POTENTIAL RECORDERS:	4 Hrs		
---------------	---	---------		
	Bio signal Recorders: Characteristics of the recording system – Electrocardiography (ECG) – Physiological nature of ECG waveform – ECG Recording setup - Echocardiography – Electroencephalography (EEG) – Origin of EEG – Simple block diagram of EEG recording setup – Electroretinography (ERG).			
UNIT – IV	OPERATION THEATRE EQUIPMENT: Surgical diathermy- Shortwave diathermy – Ventilators – Pressure limited ventilators – Anesthesia machine – Blood flow meters – Electromagnetic blood flowmeter – Cardiac Output measurements – Fick's method – Spirometer – Gas analyzers – Infrared CO2 analyzer – pH meter – Oxymeters.	4 Hrs		
UNIT – V	SPECIALIZED MEDICAL EQUIPMENTS:	4 Hrs		
TEXT BOOKS	 Blood Cell counters – Automatic blood cell counter – Digital thermometer – Audiometers – X-rays tube – X-ray machine – Angiography – Bio-telemetry – Elements of Biotelemetry system-Design of Bio-telemetry system-Physiological effects of 50Hz current passage – Micro shock and macro shock – Magnetic Resonance Imaging – principle – MRI Instrumentation. 1. M. Arumugan, <i>Biomedical Instrumentation</i> (AnuradaAgencies, Chennai, 1992). 2. R. S. Khandpur, <i>Handbook on Biomedical Instrumentation</i> (McGraw Hill, NewDelhi, 2014). 3. J. G. Webster and A. J. Nimunkar, <i>Medical Instrumentation Application and Design</i> (Wiley, Singapore, 1999). 			
REFERENCES:	 L. Cromwell, F. J. Weibell and E. A. Pfeiffer, Biomedical Instrumentation andMeasurements (Pearson, New Delhi, 2016). J. J. Carr and J. M. Brown, Introduction to Bion Equipment Technology (Pearson, New Delhi, 2001). 	nedical		
WEB RESOURCES	1. https://nptel.ac.in/courses/108105101 2. https://nptel.ac.in/courses/102105090			

At the end of the course, the student will be able to:

CO1	•	Gain knowledge on various sensing and measurement devices of electricalorigin.	K1		
CO2	•	Understand the Bio potential recorders.	K1		
CO3	•	Learn modern methods of imaging techniques and their analysis.	K2, K3		
CO4	•	Explain the medical assistance/techniques and therapeutic equipments.	K3, K4		
CO5	•	Recognize the significance of biomedical instrumentation field of study.	K3,K 5		
K1 - R	K1 - Remember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate;				

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	М	S	S	М	S	М	М	S	М	S
CO2	M	S	М	S	М	M	М	S	S	М
CO3	М	S	S	S	М	S	М	S	S	S
CO4	M	S	М	М	S	S	М	S	М	S
CO5	S	М	S	S	М	S	S	М	М	S

SEMESTER-IV

SEMESTER-IV	NUCLEAR AND PARTICLE PHYSICS	Course Code:
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating	
COURSE OBJECTIVES	 Introduces students to the different model chronological order Imparts an in-depth knowledge on the nuclear study it and the types of nuclear reactions and Provides students with details of nuclear decay Exposes students to the Standard Model of E Higgs boson 	lels of the nucleus in a clear force, experiments to their principles with relevant theories lementary Particles and

UNITS	Course Details	
	NUCLEAR MODELS	
	Liquid drop model – Weizacker mass formula – Isobaric mass parabola – Mirror	
UNIT I:	Pair - Bohr Wheeler theory of fission – shell model – spin-orbit coupling –	19 Urc
	magic numbers – angular momenta and parity of ground states – magnetic	10 113
	moment – Schmidt model – electric Quadrapole moment - Bohr and Mottelson	
	collective model – rotational and vibrational bands.	
	NUCLEAR FORCES	
UNIT II:	Nucleon - nucleon interaction - Tensor forces - properties of nuclear forces -	
	ground state of deuteron - Exchange Forces - Meson theory of nuclear forces -	18
	Yukawa potential - nucleon-nucleon scattering - effective range theory - spin	Hrs
	dependence of nuclear forces - charge independence and charge symmetry -	
	isospin formalism.	
	NUCLEAR REACTIONS	
UNIT III:	Kinds of nuclear reactions - Reaction kinematics - Q-value - Partial wave analysis	18
	of scattering and reaction cross section - scattering length - Compound nuclear	10 LL#0
	reactions - Reciprocity theorem - Resonances - Breit Wigner one level formula -	rirs
	Direct reactions - Nuclear Chain reaction – four factor formula.	

UNIT IV:	NUCLEAR DECAYBeta decay - Continuous Beta spectrum - Fermi theory of beta decay - Comparative Half-life -Fermi Kurie Plot - mass of neutrino - allowed and forbidden decay - neutrino physics - Helicity - Parity violation - Gamma decay - multipole radiations - Angular Correlation - internal conversion - nuclear isomerism - angular momentum and parity selection rules.18					
UNIT V:	ELEMENTARY PARTICLES Classification of Elementary Particles – Types of Interaction and conservation laws – Families of elementary particles – Isospin – Quantum Numbers – Strangeness – Hypercharge and Quarks –SU (2) and SU (3) groups-Gell Mann matrices– Gell Mann Okuba Mass formula-Quark Model. Standard model of particle physics – Higgs boson.	18 Hrs				
TEXT BOOKS	 D. C. Tayal – Nuclear Physics – Himalaya Publishing House (2011) K. S. Krane – Introductory Nuclear Physics – John Wiley & Sons (2008) R. Roy and P. Nigam – Nuclear Physics – New Age Publishers (1996) S. B. Patel – Nuclear Physics – An introduction – New Age International Publishers (2011) Glasstone – Source Book of Atomic Energy – Van Nostrand Reinhold Inc.,U Revised edition (1968) 	Pvt Ltd J.S 3rd				
REFER ENCE BOOKS	 L. J. Tassie – The Physics of elementary particles – Prentice Hall Press (1973) H. A. Enge – Introduction to Nuclear Physics – Addison Wesley, Publishing Co Inc. Reading. New York, (1974). Kaplan – Nuclear Physics – 1989 – 2nd Ed. – Narosa (2002) Bernard L Cohen – Concepts of Nuclear Physics – McGraw Hill Education Private Limited; 1 edition (2001) B.L. Cohen, 1971, Concepts of Nuclear Physics, TMCH, New Delhi. 	mpany.				
WEB SOURCE S	 <u>http://bubl.ac.uk/link/n/nuclearphysics.html</u> <u>http://www.phys.unsw.edu.au/PHYS3050/pdf/Nuclear_Models.pdfhttp://www.olarpedia.org/article/Nuclear_Forces</u> <u>https://www.nuclear-power.net/nuclear-power/nuclear-reactions/</u> <u>http://labman.phys.utk.edu/phys222core/modules/m12/nuclear_models.htmlttps://www.ndeed.org/EducationResources/HighSchool/Radiography/radioactive_tml</u> 	<u>vw.sch</u> <u>nl</u> edecay.h				

At the end of the course, the student will be able to:

CO1	Gain knowledge about the concepts of helicity, parity, angular correlation and internal conversion.	K1, K5
CO2	Demonstrate knowledge of fundamental aspects of the structure of the nucleus, radioactive decay, nuclear reactions and the interaction of radiation and matter.	K2, K3
CO3	Use the different nuclear models to explain different nuclear phenomena and the concept of resonances through Briet-Weigner single level formula	K3
CO4	Analyze data from nuclear scattering experiments to identify different properties of the nuclear force.	K3, K4
CO5	Summarize and identify allowed and forbidden nuclear reactions based on conservation laws of the elementary particles.	К5
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	•

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	S	S	М	S	M	S	М	S
CO2	М	S	M	М	S	S	S	М	S	М
CO3	S	М	S	S	М	S	M	S	М	S
CO4	М	S	M	М	S	S	M	S	М	S
CO5	S	М	S	М	М	S	M	S	М	S

SEMESTER-IV	ADVANCED SPECTROSCOPY	Course Code:
Instruction Hours: 6	Credits: 4	Exam Hours: 3
Internal Marks -25	External Marks-75	Total Marks: 100
CognitiveLevel	K1-Recalling K2 Understanding	
	K2-Onderstanding K3-Annlying	
	K4-Analyzing	
	K5-Evaluating	
	K6-Creating	
COURSE	To comprehend the theory behind different sp	ectroscopic methods
OBJECTIVES	\succ To know the working principles along	with an overview of
	construction of different types of spectrometer	rs involved
	> To explore various applications of these techn	iques in R &D.
	> Apply spectroscopic techniques for the qu	alitative and quantitative
	analysis of various chemical compounds.	1
	 Understand this important analytical tool 	

UNITS	Course Details	
	MICROWAVE SPECTROSCOPY	
	Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic	
TINIT T.	Molecules)-reduced mass – rotational constant Effect of isotopic	
UNIT I:	substitution - Non rigid rotator – centrifugal distortion constant- Intensity	L 8
	of Spectral Lines- Polyatomic molecules – linear – symmetric asymmetric	Irs
	top molecules - Hyperfine structure and quadrupole moment of linear	
	molecules - Instrumentation techniques – block diagram -Information	
	Derived from Rotational Spectra- Stark effect- Problems.	
	INFRA-RED SPECTROSCOPY	
	Vibrations of simple harmonic oscillator – zero-point energy- Anharmonic	
	oscillator – fundamentals, overtones and combinations- Diatomic	
UNIT II.	Vibrating Rotator- PR branch – PQR branch- Fundamental modes of	
UNIT II:	vibration of H_2O and CO_2 -Introduction to application of vibrational 1	8
	spectra- IR Spectrophotometer Instrumentation (Double BeamH	Irs
	Spectrometer) – Fourier Transform Infrared Spectroscopy - Interpretation	
	of vibrational spectra- remote analysis of atmospheric gases like N2O	
	using FTIR by National Remote Sensing Centre (NRSC), India- other simple	
	applications	

	RAMAN SPECTROSCOPY						
	Theory of Raman Scattering - Classical theory – molecular polarizability –						
	polarizability ellipsoid - Quantum theory of Raman effect - rotational						
UNIT III:	Raman spectra of linear molecule - symmetric top molecule – Stokes and						
	anti-stokes line- SR branch -Raman activity of H_2O and CO_2 . Mutual						
	exclusion principle- determination of N ₂ O structure -Instrumentation						
	technique and block diagram -structure determination of planar and non-						
	planar molecules using IR and Raman techniques - FT Raman						
	spectroscopy- SERS						
	RESONANCE SPECTROSCOPY						
	Nuclear and Electron spin-Interaction with magnetic field - Population of						
	Energy levels - Larmor precession- Relaxation times - Double resonance-						
	Chemical shift and its measurement - NMR of Hydrogen nuclei - Indirect						
UNIT IV:	Spin -Spin Interaction – interpretation of simple organic molecules -						
01122210	Instrumentation techniques of NMR spectroscopy – NMR in Chemical						
	industries- MRI Scan						
	Electron Spin Resonance: Basic principle –Total Hamiltonian (Direct						
	Dipole-Dipole interaction and Fermi Contact Interaction) – Hyperfine						
	Structure (Hydrogen atom) – ESR Spectra of Free radicals –g-factors –						
	Instrumentation - Medical applications of ESR						
	UV SPECTROSCOPY						
	Origin of UV spectra - Laws of absorption – Lambert Bouguer law –						
	Lambert Beer law - molar absorptivity – transmittance and absorbance -						
UNIT V:	Color in organic compounds- Absorption by organic Molecule - 18						
	Chromophores -Effect of conjugation on chromophores - Choice of Hrs						
	Solvent and Solvent effect - Absorption by inorganic systems -						
	Instrumentation - double beam UV-Spectrophotometer -Simple						
	applications						
	1. C N Banwell and E M McCash, 1994, Fundamentals of Molecular						
	Spectroscopy, 4th Edition, Tata McGraw–Hill, New Delhi.						
	2. G Aruldhas, 1994, Molecular Structure and Molecular Spectroscopy,						
	Prentice–Hall of India, New Delhi.						
TEVT DOOLS	3. D.N. Satyanarayana, 2001, Vibrational Spectroscopy and Applications,						
IEAI BUUKS	New Age International Publication.						
	4. B.K. Sharma, 2015, Spectroscopy, Goel Publishing House Meerut.						
	5. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7 th Edition),						
	New Age International Publishers.						
	1. J L McHale, 2008, Molecular Spectroscopy, Pearson Education India,						
DEEEDENCE	New Delhi.						
ROOKS	2. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal						
DOORD	Society of Chemistry, RSC, Cambridge.						
	3. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol. I, Chapman and						

		Hall, New York.
	4.	K. Chandra, 1989, Introductory Quantum Chemistry, Tata McGraw Hill,
		New Delhi.
	5.	Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation,
		SpringerLink.
	1.	https://www.youtube.com/watch?v=0iQhirTf2PI
	2.	https://www.coursera.org/lecture/spectroscopy/introduction-3N5D5
	3.	https://www.coursera.org/lecture/spectroscopy/infrared-spectroscopy-
WEB SOURCES		<u>8jEee</u>
	4.	https://onlinecourses.nptel.ac.in/noc20_cy08/preview
	5.	https://www.coursera.org/lecture/spectroscopy/nmr-spectroscopy-
		introduction-XCWRu

At the end of the course the student will be able to:

CO1	Understand fundamentals of rotational spectroscopy, view molecules as elastic	
-	rotors and interpret their behaviour. Able to quantify their nature and correlate	K2
	them with their characteristic properties.	
CO2	Understand the working principles of spectroscopic instruments and theoretical	
1	background of IR spectroscopy. Able to correlate mathematical process of	V 2 V2
	Fourier transformations with instrumentation. Able to interpret vibrational	К 2, КЗ
1	spectrum of small molecules.	
CO3	Interpret structures and composition of molecules and use their	V5
	knowledge of Raman Spectroscopy as an important analytical tool	K2
CO4	Use these resonance spectroscopic techniques for quantitative and	V A
	qualitative estimation of a substances	N 4
CO5	Learn the electronic transitions caused by absorption of radiation in the	V1
	UV/Vis region of the electromagnetic spectrum and be able to analyze a	кі, 1/5
	simple UV spectrum.	N J
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 - Evaluate	•

CO/PO	PO					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	S	М	S	S	М	S	М	S	М	S
CO2	M	S	М	М	S	S	S	М	S	М
CO3	S	М	S	S	М	S	М	S	М	S
CO4	M	S	М	М	S	S	М	S	М	S
CO5	S	М	S	М	М	S	М	S	М	S

SEMESTER-IV	Practical – IV -NUMERICAL METHODS AND COMPUTER PROGRAMMING (FORTRAN/C)	Course Code:				
Instruction Hours: 6	Credits: 4	Exam Hours: 3				
Internal Marks -40	External Marks-60	Total Marks: 100				
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating					
COURSE OBJECTIVES	 K6-Creating The aim and objective of the course on Computational Practical is to familiarize the of M.Sc. students with the numerical methods used in computation and programming using any high level language such as C/FORTRAN To equip the computational skill using various mathematical tools. To apply the software tools to explore the concepts of physical science. To approach the real time activities using physics and mathematical formulations. 					
	Course Details					

(Minimum of Twelve Experiments from the list)

- 1. Lagrange interpolation with Algorithm, Flow chart and output.
- 2. Newton forward interpolation with Algorithm, Flow chart and output.
- 3. Newton backward interpolation with Algorithm, Flow chart and output.
- 4. Curve-fitting: Least squares fitting with Algorithm, Flow chart and output.
- 5. Numerical integration by the trapezoidal rule with Algorithm, Flow chart and output.
- 6. Numerical integration by Simpson's rule with Algorithm, Flow chart and output.
- 7. Numerical solution of ordinary first-order differential equations by the Euler method with Algorithm, Flow chart and output.
- 8. Numerical solution of ordinary first-order differential equations by the Runge- Kutta method with Algorithm, Flow chart and output.
- 9. Finding Roots of a Polynomial Bisection Method -
- 10. Finding Roots of a Polynomial Newton Raphson Method -
- 11. Solution of Simultaneous Linear Equation by Gauss elimination method.
- 12. Solution of Ordinary Differential Equation by Euler
- 13. Runge Kutta Fourth Order Method for solving first order Ordinary Differential Equations
- 14. Newton's cotes formula
- 15. Trapezoidal rule
- 16. Simpson's 1/3 rule
- 17. Simpson's 3/8 rule
- 18. Boole's rule
- 19. Gaussian quadrature method (2 point and 3 point formula)

Giraffe's root square method for solving algebraic equation

	1. Numerical methods using Matlab – John Mathews & Kurtis Fink,
	2. Numerical methods in Science and Engineering - M.K. Venkataraman.
	National Publishing Co. Madras, 1996
	3. V. Rajaraman, 1993, Computer Oriented Numerical Methods, 3 rd Ed.
TEXT BOOKS	(Prentice-Hall, New Delhi.
	4. M.K. Jain, S.R. Iyengar and R.K. Jain, 1995, Numerical Methods for
	Scientific and Engineering Computation, 3 rd Ed. New Age International,
	New Delhi.
	5. S.S. Sastry, Introductory Methods of Numerical Analysis, PHI, New
	Delhi.
	1. S.D. Conte and C. de Boor, 1981, Elementary Numerical Analysis, An
	Algorithmic Approach, 3rd Ed., International Ed. (McGraw-Hill).
	2. B.F. Gerald and P.O. Wheately, 1994, Applied Numerical Analysis, 5th
	Edition, Addison Wesley, Reading, MA.
REFERENCE	3. B. Carnahan, H.A. Luther and J.O. Wikes, 1969, Applied Numerical
BOOKS	Methods (Wiley, New York.
	4. S.S. Kuo, 1996, Numerical Methods and Computers, Addison - Wesley,
	London.
	5. V. Rajaraman, Programming in FORTRAN/ Programming in C, PHI, New
	Delhi.

<u>COURSE OUTCOMES:</u> At the end of the course the student will be able to:

CO1	Program with the C Program/ FORTRAN with the C or any other high level language	K1
CO2	Use various numerical methods in describing/solving physics problems.	K4
CO3	Solve problem, critical thinking and analytical reasoning as applied to scientific problems.	K5
CO4	To enhance the problem-solving aptitudes of students using various numerical methods.	K5
C05	To apply various mathematical entities, facilitate to visualise any complicate tasks.	K3
CO6	Process, analyze and plot data from various physical phenomena and interpret their meaning	K4
CO7	Identify modern programming methods and describe the extent and limitations of computational methods in physics	K1

CO8	Work out numerical differentiation and integration whenever routine are not applicable.	K5
CO9	Apply various interpolation methods and finite difference concepts.	K4
CO10	Understand and apply numerical methods to find out solution of algebraic equation using different methods under different conditions, and numerical solution of system of algebraic equation.	K1, K4
K1 - R	emember; K2 – Understand; K3 - Apply; K4 - Analyze; K5 – Evaluate	

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	М	М	S	М	S	М	S	М	S	
CO2	М	S	М	М	S	S	S	М	S	М
CO3	S	S	М	S	М	S	М	S	М	S
CO4	М	S	М	М	S	S	М	S	М	S
CO5	S	М	S	М	М	S	М	S	М	S

SEMESTER-IV	EC VI-Java Programing	Course Code:				
Instruction Hours:	Credits: 3 E	xam Hours:	3			
Internal Marks - 25	External Marks-75 To	otal Marks: 1	100			
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating					
COURSE OBJECTIVES	 Enable the students to learn the basis functions, priconcepts of advanced java programming. Provide knowledge on concepts needed for distribut Architecture. 3. Learn JDBC, Servlet packages, JQuery, Java Serr JAR file format. To Apply and anlyze Java in Database To design interactive applications using Java Servlet 	nciples and ited Application ver Pages and t, JSP and JD	on d BC			
	COURSE DETAILS					
Unit: l	BASICS OF JAVA Java Basics Review: Components and event handling- Thre concepts – Networking features – Media techniques	ading	12 Hrs			
Unit: ll	REMOTE METHOD INVOCATION Remote Method Invocation-Distributed Application Archite Creating stubs and skeletons-Defining Remote objects-Rem Object Activation-Object Serilization-Java Spaces	1 ecture- lote	12 Hrs			
Unit: III	DATABASE Java in Database-JDBC principles-database access-Interacting- database search-Creating multimedia databases – Database support In web applications.					
Unit: IV	SERVLETS Java Servlets: Java Servlet and CGI programming- A simple Anatomy of a java Serlet-Readingdata from a client-Reading request header-sending data to a client and writing the htt header-working with cookies. Java Server Pages:JSP Overview-Installation-JSP tags-Com of a JSP page-Expressions-Scriptlets-Directives-Declaration complete example.	java Servlet- g http p response nponents ns-A	12 Hrs			
Unit: V	ADVANCED TECHNIQUES	1	12 Hrs			

	AR file format creation – Internationalization – Swing Programming - Advanced java techniques.	
Text Books	1. 1	
	 Jamie Jaworski, "Java Unleashed", SAMS Techmedia publications, 1999. 	
	3. 2	
	 Campione, Walrath and Huml, "The Java Tutorial", Addison Weslet 1999. 	t,
Reference Books		
	1. Jim Keogh" The complete Reference J2EE", Tata McGrawHill	
	Publishing Company Ltd, 2010.	
	2. 2	
	 David Sawyer McFarland, "JavaScript And JQuery-The Missing Manual", Oreilly Publications, 3rd Edition, 2011. 	
	4. 3	
	5. Deitel and Deitel, "Java How to Program", Third Edition, PHI/Pearson Educatin Asia.	
WEB RESOURCES		
	1. <u>https://www.javatpoint.com/servlet-tutorial</u>	
	2. <u>https://www.tutorialspoint.com/java/index.htm</u>	
	3. <u>https://onlinecourses.nptel.ac.in/noc19_cs84/preview</u>	

COURSE OUTCOMES: At the end of the course the student will be able to:

On th	On the successful completion of the course, student will be able to:					
1.	Understand the advanced concepts of Java Programming	К1,К2				
2.	Understand JDBC and RMI concepts	К2, КЗ				
3.	Apply and anlyze Java in Database	К3,К4				
4.	Handle different event in java using the delegation event model, event listener and class	К5				
5.	Design interactive applications using Java Servlet, JSP and JDBC	K5,K6				
K1-Remember; K2 – Understand; K3-Apply; K4 – Analyze; K5-Evaluate; K6-Create						

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	М	М	S	М	S	М	S	М	S	S
CO2	S	S	М	М	S	М	S	S		S
CO3	S	S	М	S	М	S	М	S	М	S
CO4	М	S	М	S	М	М	S	М	S	М
CO5	S	М	S	М	М	S	М	S	М	S

SEMESTER-IV	AECC IV- LASER PHYSICS AND NON- Course					
	LINEAR OPTICS					
Instruction Hours: 2	Credits: 2 Exam	Hours: 3				
Internal Marks -25	External Marks-75 Total N	Aarks: 100				
CognitiveLevel	K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating					
COURSE OBJECTIVES	 To understand the basic theory of laser action and appendix classify and explain the fundamentals of laser, To explain the concept of Q-switching and illustrate the various advanced lasers available, To describe the basic Physics of nonlinear optics To demonstrate differnt NLO phenomena To illustrate the application of lasers in various fields. 	oply them to				
	COURSE DETAILS					
Unit: I	Conventional lasers	4 Hrs				
	Spontaneous and Stimulated Emission - Einstein Coefficie Levels of laser action: Two level – Three level – Four level lasers – Types of lasers (out only) – Solid State Lasers: Ruby laser and Nd:YAG lase Gas lasers : He-Ne laser and CO ₂ laser – Liquid laser : I laser – Liquid Eu ³⁺ laser – Semiconductor laser	ents – line er – Dye				
Unit: II	Advanced lasers	4 Hrs				
	General description of Q-Switching – Production of Switching : Electro-optic Shutter (Kerr effect and Poci effect) – Mechanical and Saturable absorber Shutters – P power emitted during the pulse – Theory of Giant P dynamics – Laser amplifiers – Mode locking – Ultrafast la – Fiber optic lasers	Q- cels leak ulse sers				
Unit: III	Basics of Nonlinear Optics	4 Hrs				
	Wave propagation in an anisotropic crystal – Polariza response of materials to light –Harmonic generation – Sec	tion ond				

	harmonic generation – Sum and difference frequency generation – Phase matching – Third harmonic generation – Terahertz – Bi-stability.				
Unit: IV	Nonlinear Absorption and Refraction Fundamentals of multi-quantum photoelectric effect – Theory of Two photon process – Experiment evidences of 2PA materials – Multi and Three photon process – Stimulated Raman scattering – Intensity dependent refractive index – Self- focusing of light – Phase Conjugated Optics – Photorefractive effect.	4 Hrs			
Unit: V	Applications of Lasers Materials processing with lasers : Drilling, Cutting, and Welding – Nuclear fusing with lasers – Communication by lasers – Principle of holography Laser range finders – Laser Gyro – LASIK – Optical computing.	4 Hrs			
TEXT BOOKS	 Richard L. Sutherland, Handbook of Nonlinear Optic. (Marcel Decker Inc, New York,2003). K.R. Nambiar, Lasers: Principles, Types and Applicati (New Age Inter-nationalPublishers Ltd, New Delhi, 2014) 	s, ons ().			
Reference	 B.B. Laud, Lasers and Nonlinear Optics, 3rd Edn. (New Age International Pvt. Ltd., NewDelhi, 2011). R.W. Boyd, Nonlinear Optics, 2nd Edn. (Academic Press, New York, 2003). W.T. Silfvast, Laser Fundamentals (Cambridge University Press, Cambridge, 2003). Y.R. Shen, The Principles of Nonlinear Optics, (Wiley & Sons, New Jersey, 2003). 				
WEB RESOURCES	 <u>https://science.nasa.gov/ems/</u> <u>https://imagine.gsfc.nasa.gov/educators/gammaraybursts/imagine.html</u> 	/index.			

At the end of the course the student will be able to:

On the s	uccessful completion of the course, student will be able to:	
1.	• The course on Lasers and Nonlinear Optics covers the wide aspects of laser Physics alongwith nonlinear optics	K1,K2
2.	• Describes the fundamentals of Lasers and their induced NLO behavior in materials	K2, K3
3.	• Illustrates the outline of application of lasers in various sectors	K3,K4
4.	• Gives idea to apply theories on NLO for practical applications	K5
5.	• The course on Lasers and Nonlinear Optics covers the wide aspects of laser Physics alongwith nonlinear optics	K5,K6
K1-Reme	ember; K2 – Understand; K3 -Apply; K4 – Analyze; K5 -Evaluate; K6 -Create	

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	М	S	M	M	S	M	S	М	S	M
CO2	S	S	М	М	S	М	S	S		S
CO3	S	S	М	S	М	S	М	S	М	S
CO4	М	S	М	S	М	М	S	М	S	М
CO5	S	S	M	S	М	S		S	S	М

SEMESTER-IV		DATA ANALYTICS	Course Code:				
Instruction Hours: 2		Credits: 2	Exam Hours: 3				
Interna	al Marks -25	External Marks-75	Total Marks: 100				
CognitiveLevel		K1-Recalling K2-Understanding K3-Applying K4-Analyzing K5-Evaluating K6-Creating	<u></u>				
COURSI	E	To learn the different types of data terminology	ogies				
OBJECT	IVES	 To effectively learn the various aspects of data 	a science				
		• To understand the role of Big data in AI, ML a	ind other fields				
		To know about various applications of Big Da	ta filed.				
		 To understand the importance of data scienc 	e				
l laite l	Introduct	COURSE DETAILS	Databasa Data Hrs				
Mining – Data Warehouse – Data Evolution Roadmap – Big Data – Definition – Type of Data - Numeric – Categorical – Graphical – High Dimensional Data — Data Classification – Hot Data – Cold Data – Warm Data – Thick Data – Thin Data							
Unit: II	Classifica Data Sou Data – So	Classification of digital Data:Structured, Semi-Structured and Un-Structured-4 Hrs Data Sources - Time Series –Transactional Data – Biological Data – Spatial Data – Social Network Data					
Unit: III	Data Scie Science v Mathema Database,	Data Science: Data Science-A Discipline – Data Science vs Statistics, Data 4 Hrs Science vs Mathematics, Data Science vs Programming Language, Data Science vs Database, Data					
L Los : to 13/	/ Urs						
Unit: IV	Data Ana Data Ana Methods and Algor	Data Analytics - – Relation: Data Science, Analytics, Big Data Analytics. Data Science Components: Data Engineering, Data Analytics- Methods and Algorithm, Data Visualization					
Unit: V	Big Data: Sources o	Big Data: Digital Data-an Imprint: Evolution of Big Data – What is Big Data – 4 Hr Sources of Big Data.					
TEXT	1. V.	Bhuvaneswari, T. Devi, "Big Data Analytics: Scited	h Publisher, 2018				

BOOKS	. Han Hu, Yonggang Wen, Tat-Seng, Chua, XuelongLi, "Toward Scalable					
	Systems for Big Data Analytics: A Technology Tutorial", IEEE, 2014.					
Reference	 Big Data Analytics, RadhaShankarmani, M. Vijayalakshmi, Wiley, 2nd Edition (2016) 					
	2. Big Data Analytics, VenkatAnkam, PacktPublicatins, (2016)					
WEB	1. https://ocw.mit.edu/resources/res-ll-005-mathematics-of-big-data-and-machine-					
RESOURCE	learning-january-iap-2020/					
S	2. https://onlinecourses.nptel.ac.in/noc20_cs92/preview_					
	3. https://onlinecourses.swayam2.ac.in/arp19_ap60/preview					

At the end of the course the student will be able to:

On the successful completion of the course, student will be able to:						
1.	After completing this course, the student will be able to understand the various data terminologies	K1,K2				
2.	Understand the importance of data science	К2, КЗ				
3.	The concepts of Big data and related aspects	К3,К4				
4.	The potential of Big data in AI and ML and other fields	К5				
5.	To know about various applications of Big Data filed	K5,K6				
K1 -Re	K1-Remember; K2 – Understand; K3-Apply; K4 – Analyze; K5-Evaluate; K6-Create					

CO/PO	РО					PSO				
	1	2	3	4	5	1	2	3	4	5
CO1	М	S	М	M	S	М	S	М	S	М
CO2	S	S	М	М	S	М	S	S		S
CO3	S	S	М	S	М	S	М	S	М	S
CO4	М	S	М	S	М	М	S	М	S	М
CO5	S	S	M	S	M	S		S	S	М